ترغب بنشر مسار تعليمي؟ اضغط هنا

Determination of the energy of the Dzyaloshinskii-Moriya interaction in [Co/Pd(111)]5 superlattices with different Co thickness by micromagnetic simulations of labyrinth domain structures

59   0   0.0 ( 0 )
 نشر من قبل Aleksandr Davydenko
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Determination of the energy of Dzyaloshinskii-Moriya interaction along with a definition of the basic magnetic characteristics in ferromagnetic/nonmagnetic multilayered systems are both required for the construction of a magnetic skyrmion recording medium. A method for estimating the energy of the effective Dzyaloshinskii-Moriya interaction which compared the periodicities of micromagnetically simulated and experimentally measured demagnetized domain structures was shown in a current paper. Symmetric epitaxial [Co/Pd(111)]5 superlattices with Co layers of varying thickness were used as the system for investigation. The structural and magnetic properties of epitaxial [Co(dCo)/Pd]5 superlattices with different Co layers thicknesses were comprehensively investigated. The dependence of the energy of effective Dzyaloshinskii-Moriya interaction on the thickness of the Co layers in the [Co(dCo)/Pd]5 multilayered structures was determined. The relationship between Dzyaloshinskii-Moriya interaction and asymmetry of the strains between the bottom Pd/Co and top Co/Pd interfaces was discussed. The simulation parameters and the demagnetization approach prior to measuring the magnetic structure influenced the obtained results. Necessity of setting all the layers in micromagnetic simulations was established. The significant influence of interlayer dipolar coupling on the periodicity of simulated labyrinth domain structures was also confirmed.



قيم البحث

اقرأ أيضاً

The in-plane orientation of the magnetization in the center of domain walls is measured in Co/Ir(111) as a function of Co thickness via scanning electron microscopy with polarization analysis. Uncapped, thermally evaporated cobalt on an Ir(111) singl e-crystal surface is imaged in situ in ultra-high vacuum. The initial pseudomorphic growth with an atomically flat interface of cobalt on iridium ensures comparability to theoretical calculations and provides a study of an interface that is as ideal as possible. Below a cobalt thickness of 8.8 monolayers, the magnetic domain walls are purely Neel oriented and show a clockwise sense of rotation. For larger thicknesses the plane of rotation changes and the domain walls show a significant Bloch-like contribution, allowing to calculate the strength of the Dzyaloshinskii-Moriya interaction (DMI) from energy minimization. From the angle between the plane of rotation and the domain-wall normal an interfacial DMI parameter $D_s = -(1.07 pm 0.05)$ pJ/m is determined, which corresponds to a DMI energy per bond between two Co atoms at the interface of $d_{tot} = -(1.04 pm 0.05)$ meV.
The interfacial Dzyaloshinskii-Moriya interaction (iDMI) is attracting great interests for spintronics. An iDMI constant larger than 3 mJ/m^2 is expected to minimize the size of skyrmions and to optimize the DW dynamics. In this study, we experimenta lly demonstrate an enhanced iDMI in Pt/Co/X/MgO ultra-thin film structures with perpendicular magnetization. The iDMI constants were measured using a field-driven creep regime domain expansion method. The enhancement of iDMI with an atomically thin insertion of Ta and Mg is comprehensively understood with the help of ab-initio calculations. Thermal annealing has been used to crystallize the MgO thin layer for improving tunneling magneto-resistance (TMR), but interestingly it also provides a further increase of the iDMI constant. An increase of the iDMI constant up to 3.3 mJ/m^2 is shown, which could be promising for the scaling down of skyrmion electronics.
Antiferromagnetic materials present us with rich and exciting physics, which we can exploit to open new avenues in spintronic device applications. We explore perpendicularly magnetized exchange biased systems of Pt/Co/IrMn and Pt/Co/FeMn, where the c rossover from paramagnetic to antiferromagnetic behavior in the IrMn and FeMn layers is accessed by varying the thickness. We demonstrate, through magneto-optical imaging, that the magnetic domain morphology of the ferromagnetic Co layer is influenced by the N${e}$el order of the antiferromagnet (AFM) layers. We relate these variations to the anisotropy energy of the AFM layer and the ferromagnet-antiferromagnet (FM-AFM) inter-layer exchange coupling. We also quantify the interfacial Dzyaloshinskii-Moriya interaction (DMI) in these systems by Brillouin light scattering spectroscopy. The DMI remains unchanged, within experimental uncertainty, for different phases of the AFM layers, which allows us to conclude that the DMI is largely insensitive to both AFM spin order and exchange bias. Understanding such fundamental mechanisms is crucial for the development of future devices employing chiral spin textures, such as N${e}$el domain walls and skyrmions, in FM-AFM heterostructures.
By combining Brillouin Light Scattering and micromagnetic simulations we studied the spin-wave dynamics of a Co/Pd thin film multilayer, features a stripe domain structure at remanence. The periodic up and down domains are separated by cork-screw typ e domain walls. The existence of these domains causes a scattering of the otherwise bulk and surface spin-wave modes, which form mode families, similar to a one dimensional magnonic crystal. The dispersion relation and mode profiles of spin waves are measured for transferred wave vector parallel and perpendicular to the domain axis.
We study the magnetic properties of perpendicularly magnetised Pt/Co/Ir thin films and investigate the domain wall creep method of determining the interfacial Dzyaloshinskii-Moriya (DM) interaction in ultra-thin films. Measurements of the Co layer th ickness dependence of saturation magnetisation, perpendicular magnetic anisotropy, and symmetric and antisymmetric (i.e. DM) exchange energies in Pt/Co/Ir thin films have been made to determine the relationship between these properties. We discuss the measurement of the DM interaction by the expansion of a reverse domain in the domain wall creep regime. We show how the creep parameters behave as a function of in-plane bias field and discuss the effects of domain wall roughness on the measurement of the DM interaction by domain expansion. Whereas modifications to the creep law with DM field and in-plane bias fields have taken into account changes in the energy barrier scaling parameter $alpha$, we find that both $alpha$ and the velocity scaling parameter $v_{0}$ change as a function of in-plane bias field.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا