ﻻ يوجد ملخص باللغة العربية
Simulations and experimental works have been carried out in a complementary way to engineer a basic material target mimicking the same dielectric properties of the human body. It includes a resistor in parallel with a capacitor, whose values (Rh=1500 {Omega} and Ch=100 pF) are estimated in regard of parameters commonly utilized upon in vivo campaigns (frequency=30 kHz, gap=10 mm, high voltage electrode surface=12.6 mm2). This equivalent electrical human body (EEHB) circuit can be used as a reference and realistic target to calibrate electrical properties of therapeutic plasma sources before their utilization on patients. In this letter, we consider a configuration where this EEHB target interacts with a plasma gun (PG). Plasma power measurements performed in such configuration clearly indicate two operating modes depending on the value of the supplied voltage. Hence, the plasma gun generates pulsed atmospheric plasma streams likely to present therapeutic interest for voltages comprised between 3.0 and 8.5 kV while for higher values, transient arcs of thermal plasma are generated and represent substantial risks for the patient.
Seeds have been packed in a dielectric barrier device where cold atmospheric plasma has been generated to improve their germinative properties. A special attention has been paid on understanding the resulting plasma electrical properties through an e
We employ electric circuit networks to study topological states of matter in non-Hermitian systems enriched by parity-time symmetry $mathcal{PT}$ and chiral symmetry anti-$mathcal{PT}$ ($mathcal{APT}$). The topological structure manifests itself in t
Phase change memory (PCM) is an emerging data storage technology, however its programming is thermal in nature and typically not energy-efficient. Here we reduce the switching power of PCM through the combined approaches of filamentary contacts and t
The speed of writing of state-of-the-art ferromagnetic memories is physically limited by an intrinsic GHz threshold. Recently, an alternative research direction has been initiated by realizing memory devices based on antiferromagnets in which spin di
Active matter is ubiquitous in biology and becomes increasingly more important in materials science. While numerous active systems have been investigated in detail both experimentally and theoretically, general design principles for functional active