ﻻ يوجد ملخص باللغة العربية
Given a compact (Hausdorff) group $G$ and a closed subgroup $H$ of $G,$ in this paper we present symbolic criteria for pseudo-differential operators on compact homogeneous space $G/H$ characterizing the Schatten-von Neumann classes $S_r(L^2(G/H))$ for all $0<r leq infty.$ We go on to provide a symbolic characterization for $r$-nuclear, $0< r leq 1,$ pseudo-differential operators on $L^{p}(G/H)$-space with applications to adjoint, product and trace formulae. The criteria here are given in terms of the concept of matrix-valued symbols defined on noncommutative analogue of phase space $G/H times widehat{G/H}.$ Finally, we present applications of aforementioned results in the context of heat kernels.
We completely characterize the simultaneous membership in the Schatten ideals $S_ p$, $0<p<infty$ of the Hankel operators $H_ f$ and $H_{bar{f}}$ on the Bergman space, in terms of the behaviour of a local mean oscillation function, proving a conjecture of Kehe Zhu from 1991.
A full description of the membership in the Schatten ideal $S_ p(A^2_{omega})$ for $0<p<infty$ of the Toeplitz operator acting on large weighted Bergman spaces is obtained.
This paper is devoted to wavelet analysis on adele ring $bA$ and the theory of pseudo-differential operators. We develop the technique which gives the possibility to generalize finite-dimensional results of wavelet analysis to the case of adeles $bA$
A pair of functions defined on a set X with values in a vector space E is said to be disjoint if at least one of the functions takes the value 0 at every point in X. An operator acting between vector-valued function spaces is disjointness preserving
A multiplicative Hankel operator is an operator with matrix representation $M(alpha) = {alpha(nm)}_{n,m=1}^infty$, where $alpha$ is the generating sequence of $M(alpha)$. Let $mathcal{M}$ and $mathcal{M}_0$ denote the spaces of bounded and compact mu