ﻻ يوجد ملخص باللغة العربية
Doping via electrostatic gating is a powerful and widely used technique to tune the electron densities in layered materials. The microscopic details of how these setups affect the layered material are, however, subtle and call for careful theoretical treatments. Using semiconducting monolayers of transition metal dichalcogenides (TMDs) as prototypical systems affected by electrostatic gating, we show that the electronic and optical properties change indeed dramatically when the gating geometry is properly taken into account. This effect is implemented by a self-consistent calculation of the Coulomb interaction between the charges in different sub-layers within the tight-binding approximation. Thereby we consider both, single- and double-sided gating. Our results show that, at low doping levels of $10^{13}$ cm$^{-2}$, the electronic bands of monolayer TMDs shift rigidly for both types of gating, and subsequently undergo a Lifshitz transition. When approaching the doping level of $10^{14}$ cm$^{-2}$, the band structure changes dramatically, especially in the case of single-sided gating where we find that monolayer ce{MoS2} and ce{WS2} become indirect gap semiconductors. The optical conductivities calculated within linear response theory also show clear signatures of these doping-induced band structure renormalizations. Our numerical results based on light-weighted tight-binding models indicate the importance of electronic screening in doped layered structures, and pave the way for further understanding gated super-lattice structures formed by mutlilayers with extended Moir{e} pattern.
Impurities play an important role during recombination processes in semiconductors. Their important role is sharpened in atomically-thin transition-metal dichalcogenides whose two-dimensional character renders electrons and holes highly susceptible t
The electronic and thermoelectric properties of one to four monolayers of MoS$_{2}$, MoSe$_{2}$, WS$_{2}$, and WSe$_{2}$ are calculated. For few layer thicknesses,the near degeneracies of the conduction band $K$ and $Sigma$ valleys and the valence ba
In this work, we predict the emergence of the valley Edelstein Effect (VEE), which is an electric-field-induced spin polarization effect, in gated monolayer transition metal dichalcogenides (MTMDs). We found an unconventional valley-dependent respons
We study the effect of inhomogeneous strain on transition-metal dichalcogenides with a large intrinsic gap in their spectrum. It is found that, by tuning the chemical potential, superconductivity can preserve within the strain-induced discrete pseudo
Atomically thin group-VIB transition metal dichalcogenides (TMDs) have recently emerged as a new class of two-dimensional (2D) semiconductors with extraordinary properties including the direct band gap in the visible frequency range, the pronounced s