ﻻ يوجد ملخص باللغة العربية
We show that the smoothed complexity of the FLIP algorithm for local Max-Cut is at most $smash{phi n^{O(sqrt{log n})}}$, where $n$ is the number of nodes in the graph and $phi$ is a parameter that measures the magnitude of perturbations applied on its edge weights. This improves the previously best upper bound of $phi n^{O(log n)}$ by Etscheid and R{o}glin. Our result is based on an analysis of long sequences of flips, which shows~that~it is very unlikely for every flip in a long sequence to incur a positive but small improvement in the cut weight. We also extend the same upper bound on the smoothed complexity of FLIP to all binary Maximum Constraint Satisfaction Problems.
In this work, we initiate the study of fault tolerant Max Cut, where given an edge-weighted undirected graph $G=(V,E)$, the goal is to find a cut $Ssubseteq V$ that maximizes the total weight of edges that cross $S$ even after an adversary removes $k
MAX CLIQUE problem (MCP) is an NPO problem, which asks to find the largest complete sub-graph in a graph $G, G = (V, E)$ (directed or undirected). MCP is well known to be $NP-Hard$ to approximate in polynomial time with an approximation ratio of $1 +
In 2013, Orlin proved that the max flow problem could be solved in $O(nm)$ time. His algorithm ran in $O(nm + m^{1.94})$ time, which was the fastest for graphs with fewer than $n^{1.06}$ arcs. If the graph was not sufficiently sparse, the fastest run
We recently introduced the graph invariant twin-width, and showed that first-order model checking can be solved in time $f(d,k)n$ for $n$-vertex graphs given with a witness that the twin-width is at most $d$, called $d$-contraction sequence or $d$-se
The classical max-flow min-cut theorem describes transport through certain idealized classical networks. We consider the quantum analog for tensor networks. By associating an integral capacity to each edge and a tensor to each vertex in a flow networ