ترغب بنشر مسار تعليمي؟ اضغط هنا

The circumstellar environment around the embedded protostar EC 53

92   0   0.0 ( 0 )
 نشر من قبل Jeong-Eun Lee
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

EC53 is an embedded protostar with quasi-periodic emission in the near-IR and sub-mm. We use ALMA high-resolution observations of continuum and molecular line emission to describe the circumstellar environment of EC 53. The continuum image reveals a disk with a flux that suggests a mass of 0.075 Msun, much less than the estimated mass in the envelope, and an in-band spectral index that indicates grain growth to centimeter sizes. Molecular lines trace the outflow cavity walls, infalling and rotating envelope, and/or the Keplerian disk. The rotation profile of the C17O 3-2 line emission cannot isolate the Keplerian motion clearly although the lower limit of the protostellar mass can be calculated as 0.3 +- 0.1 Msun if the Keplerian motion is adopted. The weak CH3OH emission, which is anti-correlated with the HCO+ 4-3 line emission, indicates that the water snow line is more extended than what expected from the current luminosity, attesting to bygone outburst events. The extended snow line may persist for longer at the disk surface because the lower density increases the freeze-out timescale of methanol and water.

قيم البحث

اقرأ أيضاً

During the protostellar phase of stellar evolution, accretion onto the star is expected to be variable, but this suspected variability has been difficult to detect because protostars are deeply embedded. In this paper, we describe a sub-mm luminosity burst of the Class I protostar EC 53 in Serpens Main, the first variable found during our dedicated JCMT/SCUBA-2 monitoring program of eight nearby star-forming regions. EC 53 remained quiescent for the first 6 months of our survey, from February to August 2016. The sub-mm emission began to brighten in September 2016, reached a peak brightness of $1.5$ times the faint state, and has been decaying slowly since February 2017. The change in sub-mm brightness is interpreted as dust heating in the envelope, generated by a luminosity increase of the protostar of a factor of $ge 4$. The 850~$mu$m lightcurve resembles the historical $K$-band lightcurve, which varies by a factor of $sim 6$ with a 543 period and is interpreted as accretion variability excited by interactions between the accretion disk and a close binary system. The predictable detections of accretion variability observed at both near-infrared and sub-mm wavelengths make the system a unique test-bed, enabling us to capture the moment of the accretion burst and to study the consequences of the outburst on the protostellar disk and envelope.
We studied the Class I protostar 2MASS 22352345+7517076 whose dramatic brightening between the IRAS, Akari, and WISE surveys was reported by Onozato et al. (2015). 2MASS 22352345+7517076 is a member of a small group of low-mass young stellar objects, associated with IRAS 22343+7501 in the molecular cloud Lynds 1251. The IRAS, ISO, Spitzer, Akari, Herschel, and WISE missions observed different stages of its outburst. Supplemented these data with archival and our own near-infrared observations, and considering the contributions of neighbouring sources to the mid-infrared fluxes we studied the nature and environment of the outbursting object, and its photometric variations from 1983 to 2017. The low-state bolometric luminosity Lbol ~ 32 Lsun is indicative of a 100000-200000 years old protostar of 1.6-1.8 solar masses. Its 2-micron brightness started rising between 1993 and 1998, reached a peak in 2009-2011, and started declining in 2015. Changes in the spectral energy distribution suggest that the outburst was preceded by a decade-long, slow brightening in the near-infrared. The actual accretion burst occurred between 2004 and 2007. We fitted the spectral energy distribution in the bright phases with simple accretion disc models. The modelling suggested an increase of the disc accretion rate from some 3.5times 10^{-7} Msun yr^{-1} to 1.1 times 10^{-4} Msun yr^{-1}. The central star accreted nearly 10^{-3} solar masses, about a Jupiter mass during the ten years of the outburst. We observed H_2 emission lines in the K-band spectrum during the fading phase in 2017. The associated optical nebulosity RNO 144 and the Herbig-Haro object HH 149 have not exhibited significant variation in shape and brightness during the outburst.
We present the first resolved observations of the 1.3mm polarized emission from the disk-like structure surrounding the high-mass protostar Cepheus A HW2. These CARMA data partially resolve the dust polarization, suggesting an uniform morphology of p olarization vectors with an average position angle of 57 degrees and an average polarization fraction of 2.0%. The distribution of the polarization vectors can be attributed to (1) the direct emission of magnetically aligned grains of dust by a uniform magnetic field, or (2) the pattern produced by the scattering of an inclined disk. We show that both models can explain the observations, and perhaps a combination of the two mechanisms produce the polarized emission. A third model including a toroidal magnetic field does not match the observations. Assuming scattering is the polarization mechanism, these observations suggest that during the first few 10000 years of high-mass star formation, grain sizes can grow from 1 to several 10s micron.
210 - Per Bjerkeli 2019
Context. The relationship between outflow launching and formation of accretion disks around young stellar objects is still not entirely understood, which is why spectrally and spatially resolved observations are needed. Recently, the Atacama Large Mi llimetre/sub-millimetre Array (ALMA) has carried out long-baseline observations towards a handful of sources, revealing connections between outflows and the inner regions of disks. Aims. Here we aim to determine the small-scale kinematic and morphological properties of the outflow from the isolated protostar B335 for which no Keplerian disk has, so far, been observed on scales down to 10 au. Methods. We use ALMA in its longest-baseline configuration to observe emission from CO isotopologs, SiO, SO$_2$ and CH$_3$OH. The proximity of B335 provides a resolution of ~3 au (0.03). We also combine our long-baseline data with archival data to produce a high-fidelity image covering scales up to 700 au (7). Results. $^{12}$CO has a X-shaped morphology with arms ~50 au in width that we associate with the walls of an outflow cavity, similar to what is observed on larger scales. Long-baseline continuum emission is confined to <7 au of the protostar, while short-baseline continuum emission follows the $^{12}$CO outflow and cavity walls. Methanol is detected within ~30 au of the protostar. SiO is also detected in the vicinity of the protostar, but extended along the outflow. Conclusions. The $^{12}$CO outflow shows no clear signs of rotation at distances $gtrsim$30 au from the protostar. SiO traces the protostellar jet on small scales, but without obvious rotation. CH$_3$OH and SO$_2$ trace a region <16 au in diameter, centred on the continuum peak, which is clearly rotating. Using episodic, high-velocity, $^{12}$CO features, we estimate the launching radius of the outflow to be <0.1 au and dynamical timescales on the order of a few years.
Context: Methanol is thought to be mainly formed during the prestellar phase and its deuterated form keeps memory of the conditions at that epoch. Thanks to the unique combination of high angular resolution and sensitivity provided by ALMA, we wish t o measure methanol deuteration in the planet formation region around a Class 0 protostar and to understand its origin. Aims: We mapped both the $^{13}$CH$_3$OH and CH$_2$DOH distribution in the inner regions ($sim$100 au) of the HH212 system in Orion B. To this end, we used ALMA Cycle 1 and Cycle 4 observations in Band 7 with angular resolution down to $sim$0.15$$. Results: We detected 6 lines of $^{13}$CH$_3$OH and 13 lines of CH$_2$DOH with upper level energies up to 438 K in temperature units. We derived a rotational temperature of (171 $pm$ 52) K and column densities of 7$times$10$^{16}$ cm$^{-2}$ ($^{13}$CH$_3$OH) and 1$times$10$^{17}$ cm$^{-2}$ (CH$_2$DOH), respectively. Consequently, the D/H ratio is (2.4 $pm$ 0.4)$times$10$^{-2}$, a value lower by an order of magnitude with respect to what was previously measured using single dish telescopes toward protostars located in Perseus. Our findings are consistent with the higher dust temperatures in Orion B with respect to that derived for the Perseus cloud. The emission is tracing a rotating structure extending up to 45 au from the jet axis and elongated by 90 au along the jet axis. So far, the origin of the observed emission appears to be related with the accretion disk. Only higher spatial resolution measurements however, will be able to disentangle between different possible scenarios: disk wind, disk atmosphere, or accretion shocks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا