ﻻ يوجد ملخص باللغة العربية
Objectives: Glioblastomas are the most aggressive brain and central nervous system (CNS) tumors with poor prognosis in adults. The purpose of this study is to develop a machine-learning based classification method using radio-mic features of multi-parametric MRI to classify high-grade gliomas (HGG) and low-grade gliomas (LGG). Methods: Multi-parametric MRI of 80 patients, 40 HGG and 40 LGG, with gliomas from the MICCAI BRATs 2015 training database were used in this study. Each patients T1, contrast-enhanced T1, T2, and Fluid Attenuated Inversion Recovery (FLAIR) MRIs as well as the tumor contours were provided in the database. Using the given contours, radiomic features from all four multi-parametric MRIs were extracted. Of these features, a feature selection process using two-sample T-test and least absolute shrinkage, selection operator (LASSO), and a feature correlation threshold was applied to various combinations of T1, contrast-enhanced T1, T2, and FLAIR MRIs separately. These selected features were then used to train, test, and cross-validate a random forest to differentiate HGG and LGG. Finally, the classification accuracy and area under the curve (AUC) were used to evaluate the classification method. Results: Optimized parameters showed that on average, the overall accuracy of our classification method was 0.913 or 73 out of 80 correct classifications, 36/40 for HGG and 37/40 for LGG, with an AUC of 0.956 based on the combination with FLAIR, T1, T1c and T2 MRIs. Conclusion: This study shows that radio-mic features derived from multi-parametric MRI could be used to accurately classify high and lower grade gliomas. The radio-mic features from multi-parametric MRI in combination with even more advanced machine learning methods may further elucidate the underlying tumor biology and response to therapy.
Diffuse low grade gliomas are slowly growing tumors that always recur after treatment. In this paper, we revisit the modeling of the tumor radius evolution before and after the radiotherapy process and propose a novel model that is simple, yet biolog
In higher educational institutes, many students have to struggle hard to complete different courses since there is no dedicated support offered to students who need special attention in the registered courses. Machine learning techniques can be utili
Identifying prostate cancer patients that are harboring aggressive forms of prostate cancer remains a significant clinical challenge. To shed light on this problem, we develop an approach based on multispectral deep-ultraviolet (UV) microscopy that p
Artificial intelligence (AI) classification holds promise as a novel and affordable screening tool for clinical management of ocular diseases. Rural and underserved areas, which suffer from lack of access to experienced ophthalmologists may particula
As bone and air produce weak signals with conventional MR sequences, segmentation of these tissues particularly difficult in MRI. We propose to integrate patch-based anatomical signatures and an auto-context model into a machine learning framework to