ﻻ يوجد ملخص باللغة العربية
Second harmonic generation (SHG) on the pyrochlore metal Cd2Re2O7 indicates the presence of three order parameters setting in below an inversion breaking transition. Here, we explore a possible structural explanation and relate it not only to the SHG data, but also to neutron and x-ray diffraction, where we find that such a structural scenario can explain certain reflection extinctions observed in single crystal x-ray data. From this analysis, we suggest future experiments that could be done to resolve this matter. Finally, we comment on the Landau-violating nature of the inversion breaking transition and its relation to similar phenomena observed in improper ferroelectrics.
The 5d-transition metal pyrochlore oxide Cd2Re2O7, which was recently suggested to be a prototype of the spin-orbit-coupled metal [Phys. Rev. Lett. 115, 026401 (2015)], exhibits an inversion-symmetry breaking (ISB) transition at 200 K and a subsequen
The pyrochlore metal Cd2Re2O7 has been recently investigated by second-harmonic generation (SHG) reflectivity. In this paper, we develop a general formalism that allows for the identification of the relevant tensor components of the SHG from azimutha
TbMnO3 is an orthorhombic insulator where incommensurate spin order for temperature T_N < 41K is accompanied by ferroelectric order for T < 28K. To understand this, we establish the magnetic structure above and below the ferroelectric transition usin
Sr3(Ru1-xMnx)2O7, in which 4d-Ru is substituted by the more localized 3d-Mn, is studied by x-ray dichroism and spin-resolved density functional theory. We find that Mn impurities do not exhibit the same 4+ valence of Ru, but act as 3+ acceptors; the
Due to increased interest in the unusual magnetic and transport behavior of MnSi and its possible relation to its crystal structure (B20) which has unusual coordination and lacks inversion symmetry, we provide a detailed analysis of the electronic an