ﻻ يوجد ملخص باللغة العربية
We introduce a class of multi-particle Greenberger-Horne-Zeilinger (GHZ) states, and study entanglement swapping between two qubit systems for Bell states and for the class of GHZ states, respectively. We generalize the bi-system entanglement swapping of Bell states and multi-particle GHZ states to any number of qubit systems. We further study the entanglement swapping schemes between any number of Bell states and between any number of the introduced GHZ states in a detailed way, and propose the schemes that can generate two identical GHZ states. We illustrate the applications of such schemes in quantum information processing by proposing quantum protocols for quantum key distribution, quantum secret sharing and quantum private comparison.
We propose a resource-efficient error-rejecting entangled-state analyzer for polarization-encoded multiphoton systems. Our analyzer is based on two single-photon quantum-nondemolition detectors, where each of them is implemented with a four-level emi
We propose a probabilistic quantum cloning scheme using Greenberger-Horne-Zeilinger states, Bell basis measurements, single-qubit unitary operations and generalized measurements, all of which are within the reach of current technology. Compared to an
The $N$-qubit Greenberger-Horne-Zeilinger (GHZ) states are the maximally entangled states of $N$ qubits, which have had many important applications in quantum information processing, such as quantum key distribution and quantum secret sharing. Thus h
In device-independent quantum information processing Bell inequalities are not only used as detectors of nonlocality, but also as certificates of relevant quantum properties. In order for these certificates to work, one very often needs Bell inequali
Genuine 3-qubit entanglement comes in two different inconvertible types represented by the Greenberger-Horne-Zeilinger (GHZ) state and the W state. We describe a specific method based on local positive operator valued measures and classical communica