ترغب بنشر مسار تعليمي؟ اضغط هنا

Rethinking Normalization and Elimination Singularity in Neural Networks

146   0   0.0 ( 0 )
 نشر من قبل Siyuan Qiao
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we study normalization methods for neural networks from the perspective of elimination singularity. Elimination singularities correspond to the points on the training trajectory where neurons become consistently deactivated. They cause degenerate manifolds in the loss landscape which will slow down training and harm model performances. We show that channel-based normalizations (e.g. Layer Normalization and Group Normalization) are unable to guarantee a far distance from elimination singularities, in contrast with Batch Normalization which by design avoids models from getting too close to them. To address this issue, we propose BatchChannel Normalization (BCN), which uses batch knowledge to avoid the elimination singularities in the training of channel-normalized models. Unlike Batch Normalization, BCN is able to run in both large-batch and micro-batch training settings. The effectiveness of BCN is verified on many tasks, including image classification, object detection, instance segmentation, and semantic segmentation. The code is here: https://github.com/joe-siyuan-qiao/Batch-Channel-Normalization.

قيم البحث

اقرأ أيضاً

Modern neural networks are over-parametrized. In particular, each rectified linear hidden unit can be modified by a multiplicative factor by adjusting input and output weights, without changing the rest of the network. Inspired by the Sinkhorn-Knopp algorithm, we introduce a fast iterative method for minimizing the L2 norm of the weights, equivalently the weight decay regularizer. It provably converges to a unique solution. Interleaving our algorithm with SGD during training improves the test accuracy. For small batches, our approach offers an alternative to batch-and group-normalization on CIFAR-10 and ImageNet with a ResNet-18.
In this work, we propose a novel technique to boost training efficiency of a neural network. Our work is based on an excellent idea that whitening the inputs of neural networks can achieve a fast convergence speed. Given the well-known fact that inde pendent components must be whitened, we introduce a novel Independent-Component (IC) layer before each weight layer, whose inputs would be made more independent. However, determining independent components is a computationally intensive task. To overcome this challenge, we propose to implement an IC layer by combining two popular techniques, Batch Normalization and Dropout, in a new manner that we can rigorously prove that Dropout can quadratically reduce the mutual information and linearly reduce the correlation between any pair of neurons with respect to the dropout layer parameter $p$. As demonstrated experimentally, the IC layer consistently outperforms the baseline approaches with more stable training process, faster convergence speed and better convergence limit on CIFAR10/100 and ILSVRC2012 datasets. The implementation of our IC layer makes us rethink the common practices in the design of neural networks. For example, we should not place Batch Normalization before ReLU since the non-negative responses of ReLU will make the weight layer updated in a suboptimal way, and we can achieve better performance by combining Batch Normalization and Dropout together as an IC layer.
Analog computing hardwares, such as Processing-in-memory (PIM) accelerators, have gradually received more attention for accelerating the neural network computations. However, PIM accelerators often suffer from intrinsic noise in the physical componen ts, making it challenging for neural network models to achieve the same performance as on the digital hardware. Previous works in mitigating intrinsic noise assumed the knowledge of the noise model, and retraining the neural networks accordingly was required. In this paper, we propose a noise-agnostic method to achieve robust neural network performance against any noise setting. Our key observation is that the degradation of performance is due to the distribution shifts in network activations, which are caused by the noise. To properly track the shifts and calibrate the biased distributions, we propose a noise-aware batch normalization layer, which is able to align the distributions of the activations under variational noise inherent in the analog environments. Our method is simple, easy to implement, general to various noise settings, and does not need to retrain the models. We conduct experiments on several tasks in computer vision, including classification, object detection and semantic segmentation. The results demonstrate the effectiveness of our method, achieving robust performance under a wide range of noise settings, more reliable than existing methods. We believe that our simple yet general method can facilitate the adoption of analog computing devices for neural networks.
117 - Guangyao Chen , Peixi Peng , Li Ma 2021
Recently, the generalization behavior of Convolutional Neural Networks (CNN) is gradually transparent through explanation techniques with the frequency components decomposition. However, the importance of the phase spectrum of the image for a robust vision system is still ignored. In this paper, we notice that the CNN tends to converge at the local optimum which is closely related to the high-frequency components of the training images, while the amplitude spectrum is easily disturbed such as noises or common corruptions. In contrast, more empirical studies found that humans rely on more phase components to achieve robust recognition. This observation leads to more explanations of the CNNs generalization behaviors in both robustness to common perturbations and out-of-distribution detection, and motivates a new perspective on data augmentation designed by re-combing the phase spectrum of the current image and the amplitude spectrum of the distracter image. That is, the generated samples force the CNN to pay more attention to the structured information from phase components and keep robust to the variation of the amplitude. Experiments on several image datasets indicate that the proposed method achieves state-of-the-art performances on multiple generalizations and calibration tasks, including adaptability for common corruptions and surface variations, out-of-distribution detection, and adversarial attack.
As an indispensable component, Batch Normalization (BN) has successfully improved the training of deep neural networks (DNNs) with mini-batches, by normalizing the distribution of the internal representation for each hidden layer. However, the effect iveness of BN would diminish with scenario of micro-batch (e.g., less than 10 samples in a mini-batch), since the estimated statistics in a mini-batch are not reliable with insufficient samples. In this paper, we present a novel normalization method, called Batch Kalman Normalization (BKN), for improving and accelerating the training of DNNs, particularly under the context of micro-batches. Specifically, unlike the existing solutions treating each hidden layer as an isolated system, BKN treats all the layers in a network as a whole system, and estimates the statistics of a certain layer by considering the distributions of all its preceding layers, mimicking the merits of Kalman Filtering. BKN has two appealing properties. First, it enables more stable training and faster convergence compared to previous works. Second, training DNNs using BKN performs substantially better than those using BN and its variants, especially when very small mini-batches are presented. On the image classification benchmark of ImageNet, using BKN powered networks we improve upon the best-published model-zoo results: reaching 74.0% top-1 val accuracy for InceptionV2. More importantly, using BKN achieves the comparable accuracy with extremely smaller batch size, such as 64 times smaller on CIFAR-10/100 and 8 times smaller on ImageNet.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا