ﻻ يوجد ملخص باللغة العربية
We studied physical properties of matter in 24,544 filaments ranging from 30 to 100 Mpc in length, identified in the Sloan Digital Sky Survey (SDSS). We stacked the Comptonization y map produced by the Planck Collaboration around the filaments, excluding the resolved galaxy groups and clusters above a mass of ~3*10^13 Msun. We detected the thermal Sunyaev-Zeldovich signal for the first time at a significance of 4.4 sigma in filamentary structures on such a large scale. We also stacked the Planck cosmic microwave background (CMB) lensing convergence map in the same manner and detected the lensing signal at a significance of 8.1 sigma. To estimate physical properties of the matter, we considered an isothermal cylindrical filament model with a density distribution following a beta-model (beta=2/3). Assuming that the gas distribution follows the dark matter distribution, we estimate that the central gas and matter overdensity and gas temperature are overdensity = (19.0 +27.3 -12.1) and temperature = (1.2 +- 0.4)*10^6 K, which results in a measured baryon fraction of (0.080 +0.116 -0.051) * Omega_b.
We follow the evolution of galaxy systems in numerical simulation. Our goal is to understand the role of density perturbations of various scales in the formation and evolution of the cosmic web. We perform numerical simulations with the full power sp
Strong accretion shocks are expected to illuminate the warm-hot inter-galactic medium encompassed by the filaments of the cosmic web, through synchrotron radio emission. Given their high sensitivity, low-frequency large radio facilities may already b
We report the first statistical detection of X-ray emission from cosmic web filaments in ROSAT data. We selected 15,165 filaments at 0.2<z<0.6 ranging from 30 Mpc to 100 Mpc in length, identified in the Sloan Digital Sky Survey (SDSS) survey. We stac
We investigate the spin evolution of dark matter haloes and their dependence on the number of connected filaments from the cosmic web at high redshift (spin-filament relation hereafter). To this purpose, we have simulated $5000$ haloes in the mass ra
Observations of the cosmic microwave background indicate that baryons account for 5% of the Universes total energy content. In the local Universe, the census of all observed baryons falls short of this estimate by a factor of two. Cosmological simula