ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Gauge Invariance of Cosmological Gravitational Waves

207   0   0.0 ( 0 )
 نشر من قبل Gabriele Franciolini
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The issue of the gauge invariance of gravitational waves arises if they are produced in the early universe at second-order in perturbation theory. We address it by dividing the discussion about the gauge invariance in three parts: the production of gravitational waves, their propagation in the real universe, and their measurement.

قيم البحث

اقرأ أيضاً

We show that solitonic cosmological gravitational waves propagated through the Friedmann universe and generated by the inhomogeneities of the gravitational field near the Big Bang can be responsible for increase of cosmological distances.
60 - Graham M. Shore 2017
The geometry of twisted null geodesic congruences in gravitational plane wave spacetimes is explored, with special focus on homogeneous plane waves. The role of twist in the relation of the Rosen coordinates adapted to a null congruence with the fund amental Brinkmann coordinates is explained and a generalised form of the Rosen metric describing a gravitational plane wave is derived. The Killing vectors and isometry algebra of homogeneous plane waves (HPWs) are described in both Brinkmann and twisted Rosen form and used to demonstrate the coset space structure of HPWs. The van Vleck-Morette determinant for twisted congruences is evaluated in both Brinkmann and Rosen descriptions. The twisted null congruences of the Ozsvath-Schucking,`anti-Mach plane wave are investigated in detail. These developments provide the necessary geometric toolkit for future investigations of the role of twist in loop effects in quantum field theory in curved spacetime, where gravitational plane waves arise generically as Penrose limits; in string theory, where they are important as string backgrounds; and potentially in the detection of gravitational waves in astronomy.
We investigate the influence of a gravitational wave background on particles in circular motion. We are especially interested in waves leading to stationary orbits. This consideration is limited to circular orbits perpendicular to the incidence direc tion. As a main result of our calculation we obtain in addition to the well-known alteration of the radial distance a time dependent correction term for the phase modifying the circular motion of the particle. A background of gravitational waves creates some kind of uncertainty.
We study gauge (in)dependence of the gravitational waves (GWs) induced from curvature perturbations. For the GWs produced in a radiation-dominated era, we find that the observable (late-time) GWs in the TT gauge and in the Newtonian gauge are the sam e in contrast to a claim in the literature. We also mention the interpretation of the gauge dependence of the tensor perturbations which appears in the context of the induced GWs.
82 - F.Fucito 2000
In this talk I review recent progresses in the detection of scalar gravitational waves. Furthermore, in the framework of the Jordan-Brans-Dicke theory, I compute the signal to noise ratio for a resonant mass detector of spherical shape and for binary sources and collapsing stars. Finally I compare these results with those obtained from laser interferometers and from Einsteinian gravity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا