ﻻ يوجد ملخص باللغة العربية
Suppose the observations of Lagrangian trajectories for fluid flow in some physical situation can be modelled sufficiently accurately by a spatially correlated It^o stochastic process (with zero mean) obtained from data which is taken in fixed Eulerian space. Suppose we also want to apply Hamiltons principle to derive the stochastic fluid equations for this situation. Now, the variational calculus for applying Hamiltons principle requires the Stratonovich process, so we must transform from It^o noise in the emph{data frame} to the equivalent Stratonovich noise. However, the transformation from the It^o process in the data frame to the corresponding Stratonovich process shifts the drift velocity of the transformed Lagrangian fluid trajectory out of the data frame into a non-inertial frame obtained from the It^o correction. The issue is, Will non-inertial forces arising from this transformation of reference frames make a difference in the interpretation of the solution behaviour of the resulting stochastic equations? This issue will be resolved by elementary considerations.
Diving induces large pressures during water entry, accompanied by the creation of cavity and water splash ejected from the free water surface. To minimize impact forces, divers streamline their shape at impact. Here, we investigate the impact forces
Multi-fluid models have recently been proposed as an approach to improving the representation of convection in weather and climate models. This is an attractive framework as it is fundamentally dynamical, removing some of the assumptions of mass-flux
We are modelling multi-scale, multi-physics uncertainty in wave-current interaction (WCI). To model uncertainty in WCI, we introduce stochasticity into the wave dynamics of two classic models of WCI; namely, the Generalised Lagrangian Mean (GLM) mode
Numerical simulation of fluids plays an essential role in modeling many physical phenomena, such as weather, climate, aerodynamics and plasma physics. Fluids are well described by the Navier-Stokes equations, but solving these equations at scale rema
We develop further ideas on how to construct low-dimensional models of stochastic dynamical systems. The aim is to derive a consistent and accurate model from the originally high-dimensional system. This is done with the support of centre manifold th