ترغب بنشر مسار تعليمي؟ اضغط هنا

Kinematic surprises in twisted particle collisions

58   0   0.0 ( 0 )
 نشر من قبل Igor Ivanov
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Twisted particles refer to non-plane-wave states of photons, electrons, hadrons, or any other particle which carry non-zero, adjustable orbital angular momentum with respect to their average propagation direction. Twisted photons and electrons have already been experimentally demonstrated, and one can expect creation of twisted states of other particles in future. Such states can be brought in collisions, offering a completely new degree of freedom in collider experiments and, especially, a novel tool for hadronic physics. We recently showed that $2 to 1$ processes with two twisted particles such as resonance production in twisted $e^+e^-$ annihilation give access to observables which are difficult or impossible to probe in the usual plane-wave collisions. In this paper, we discuss in detail surprising kinematic features of this process, focusing on spinless particle annihilation. They include (1) a new dimension in the final momentum space available in twisted annihilation, (2) interference fringes emerging in the cross section as a function of the total energy, and (3) the built-in mass spectrometric capability of this process, that is, simultaneous production and automatic angular separation of several resonances with different masses in monochromatic twisted particle annihilation experiment running at fixed energy. All these features cannot be obtained in the usual plane wave collision setting.

قيم البحث

اقرأ أيضاً

Collisions of twisted particles --- that is, non-plane-wave states of photons, electrons, or any other particle, equipped with a non-zero orbital angular momentum (OAM) with respect to its propagation direction --- offer novel ways to probe particle structure and interactions. In the recent paper cite{Ivanov:2019vxe}, we argued that resonance production in twisted photon collisions or twisted $e^+e^-$ annihilation gives access to parity- and spin-sensitive observables in inclusive cross sections, even when the initial particles are unpolarized. Here, we explore these features in detail, providing a qualitative picture and illustrating it with numerical examples. We show how one can detect parity-violating effects in collisions of unpolarized twisted photons and how one can produce almost $100%$ polarized vector mesons in unpolarized twisted $e^+e^-$ annihilation. These examples highlight the unprecedented level of control over polarization offered by twisted particles, impossible in the usual plane wave collisions.
Low energy bar{K}N interactions are studied within Unitary Chiral Perturbation Theory at next-to-leading order with ten coupled channels. We pay special attention to the recent precise determination of the strong shift and width of the kaonic hydroge n 1s state by the DEAR Collaboration that has challenged our theoretical understanding of this sector of strong interactions. We typically find two classes of solutions, both of them reproducing previous data, that either can or cannot accommodate the DEAR measurements. The former class has not been previously discussed.
64 - G. Giacomelli 2009
A short historical review is made of charged particle production at high energy proton synchrotrons and at pp and {p}p colliders. The review concerns mainly low p_t processes, including diffraction processes, and fragmentation of nuclei in nucleus-nu cleus collisions. A short recollection is made of the first studies of high p_t processes. Conclusions and perspectives follow.
We compute two-particle production in p+A collisions and extract azimuthal harmonics, using the dilute-dense formalism in the Color Glass Condensate framework. The multiple scatterings of the partons inside the projectile proton on the dense gluons i nside the target nucleus are expressed in terms of Wilson lines. They generate interesting correlations, which can be partly responsible for the signals of collectivity measured at RHIC and at the LHC. Most notably, while gluon Wilson loops yield vanishing odd harmonics, quark Wilson loops can generate sizable odd harmonics for two particle correlations. By taking both quark and gluon channels into account, we find that the overall second and third harmonics lie rather close to the recent PHENIX data at RHIC.
In 2009, Banados, Silk and West (BSW) pointed out the possibility of having an unbounded limit of centre-of-mass collision energy for test particles in the field of an extremal Kerr black hole, if one of them has fine-tuned parameters and the collisi on point is approaching the horizon. The possibility of this BSW effect attracted much attention: it was generalised to arbitrary (dirty) rotating black holes and an analogy was found for collisions of charged particles in the field of non-rotating charged black holes. Our work considers the unification of these two mechanisms, which have so far been studied only separately. Exploring the enlarged parameter space, we find kinematic restrictions that may prevent the fine-tuned particles from reaching the limiting collision point. These restrictions are first presented in a general form, which can be used with an arbitrary black-hole model, and then visualised for the Kerr-Newman solution by plotting the admissible region in the parameter space of critical particles, reproducing some known results and obtaining a number of new ones. For example, we find that (marginally) bounded critical particles with enormous values of angular momentum can, curiously enough, approach the degenerate horizon, if the charge of the black hole is very small. Such mega-BSW behaviour is excluded in the case of a vacuum black hole, or a black hole with large charge. It may be interesting in connection with the small Wald charge induced on rotating black holes in external magnetic fields.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا