ﻻ يوجد ملخص باللغة العربية
A notion of interpretation between arbitrary logics is introduced, and the poset Log of all logics ordered under interpretability is studied. It is shown that in Log infima of arbitrarily large sets exist, but binary suprema in general do not. On the other hand, the existence of suprema of sets of equivalential logics is established. The relations between Log and the lattice of interpretability types of varieties are investigated.
We give a sufficient condition for Kripke completeness of modal logics enriched with the transitive closure modality. More precisely, we show that if a logic admits what we call definable filtration (ADF), then such an expansion of the logic is compl
This paper shows how to transform explosive many-valued systems into paraconsistent logics. We investigate especially the case of three-valued systems showing how paraconsistent three-valued logics can be obtained from them.
A theorem of alternatives provides a reduction of validity in a substructural logic to validity in its multiplicative fragment. Notable examples include a theorem of Arnon Avron that reduces the validity of a disjunction of multiplicative formulas in
Given a class $mathcal C$ of models, a binary relation ${mathcal R}$ between models, and a model-theoretic language $L$, we consider the modal logic and the modal algebra of the theory of $mathcal C$ in $L$ where the modal operator is interpreted via
Analytic proof calculi are introduced for box and diamond fragments of basic modal fuzzy logics that combine the Kripke semantics of modal logic K with the many-valued semantics of Godel logic. The calculi are used to establish completeness and complexity results for these fragments.