ترغب بنشر مسار تعليمي؟ اضغط هنا

Evidence for an Additional Symmetry Breaking from Direct Observation of Band Splitting in the Nematic State of FeSe Superconductor

379   0   0.0 ( 0 )
 نشر من قبل Xingjiang Zhou
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The iron-based superconductor FeSe has attracted much recent attention because of its simple crystal structure, distinct electronic structure and rich physics exhibited by itself and its derivatives. Determination of its intrinsic electronic structure is crucial to understand its physical properties and superconductivity mechanism. Both theoretical and experimental studies so far have provided a picture that FeSe consists of one hole-like Fermi surface around the Brillouin zone center in its nematic state. Here we report direct observation of two hole-like Fermi surface sheets around the Brillouin zone center, and the splitting of the associated bands, in the nematic state of FeSe by taking high resolution laser-based angle-resolved photoemission measurements. These results indicate that, in addition to nematic order and spin-orbit coupling, there is an additional order in FeSe that breaks either inversion or time reversal symmetries. The new Fermi surface topology asks for reexamination of the existing theoretical and experimental understanding of FeSe and stimulates further efforts to identify the origin of the hidden order in its nematic state.



قيم البحث

اقرأ أيضاً

Electronic correlations were long suggested not only to be responsible for the complexity of many novel materials, but also to form essential prerequisites for their intriguing properties. Electronic behavior of iron-based superconductors is far from conventional, while the reason for that is not yet understood. Here we present a combined study of the electronic spectrum in the iron-based superconductor FeSe by means of angle-resolved photoemission spectroscopy (ARPES) and dynamical mean field theory (DMFT). Both methods in unison reveal strong deviations of the spectrum from single-electron approximation for the whole 3$d$ band of iron: not only the well separated coherent and incoherent parts of the spectral weight are observed, but also a noticeable dispersion of the lower Hubbard band (LHB) is clearly present. This way we demonstrate correlations of the most puzzling intermediate coupling strength in iron superconductors.
Superconductivity in FeSe has recently attracted a great deal of attention because it emerges out of an electronic nematic state of elusive character. Here we study both the electronic normal state and the superconducting gap structure using heat-cap acity measurements on high-quality single crystals. The specific-heat curve, from 0.4 K to Tc = 9.1 K, is found to be consistent with a recent gap determination using Bogoliubov quasiparticle interference [P. O. Sprau et al., Science 357, 75 (2017)], however only if nodes are introduced on either the electron or the hole Fermi-surface sheets. Our analysis, which is consistent with quantum-oscillation measurements, relies on the presence of only two bands, and thus the fate of the theoretically predicted second electron pocket remains mysterious.
219 - Y. Zhang , M. Yi , Z.-K. Liu 2015
Nematic state, where the system is translationally invariant but breaks the rotational symmetry, has drawn great attentions recently due to experimental observations of such a state in both cuprates and iron-based superconductors. The mechanism of ne maticity that is likely tied to the pairing mechanism of high-Tc, however, still remains controversial. Here, we studied the electronic structure of multilayer FeSe film by angle-resolved photoemission spectroscopy (ARPES). We found that the FeSe film enters the nematic state around 125 K, while the electronic signature of long range magnetic order has not been observed down to 20K indicating the non-magnetic origin of the nematicity. The band reconstruction in the nematic state is characterized by the splitting of the dxz and dyz bands. More intriguingly, such energy splitting is strong momentum dependent with the largest band splitting of ~80meV at the zone corner. The simple on-site ferro-orbital ordering is insufficient to reproduce the nontrivial momentum dependence of the band reconstruction. Instead, our results suggest that the nearest-neighbor hopping of dxz and dyz is highly anisotropic in the nematic state, the origin of which holds the key in understanding the nematicity in iron-based superconductors.
89 - P. Neha , P.K.Biswas , Tanmoy Das 2018
The single helical Fermi surface on the surface state of three-dimensional topological insulator Bi2Se3 is constrained by the time-reversal invariant bulk topology to possess a spin-singlet superconducting pairing symmetry. In fact, the Cu-doped, and pressure-tuned superconducting Bi2Se3 show no evidence of the time reversal symmetry breaking. We report on the detection of the time reversal symmetry (TRS) breaking in the topological superconductor Sr0.1Bi2Se3 , probed by zero-field (ZF) {mu}SR measurements. The TRS breaking provides strong evidence for the existence of spin-triplet pairing state. The temperature dependent super-fluid density deduced from transverse-field (TF) {mu}SR measurement yields nodeless superconductivity with low superconducting carrier density and penetration depth {lambda} = 1622(134) nm. From the microscopic theory of unconventional pairing, we find that such a fully gapped spin triplet pairing channel is promoted by the complex interplay between the structural hexagonal warping and higher order Dresselhaus spin-orbit coupling terms. Based on Ginzburg-Landau analysis, we delineate the mixing of singlet to triplet pairing symmetry as the chemical potential is tuned far above from the Dirac cone. Our observation of such spontaneous TRS breaking chiral superconductivity on a helical surface state, protected by the TRS invariant bulk topology, can open new avenues for interesting research and applications.
The origin of the electronic nematicity in FeSe, which occurs below a tetragonal-to-orthorhombic structural transition temperature $T_s$ ~ 90 K, well above the superconducting transition temperature $T_c = 9$ K, is one of the most important unresolve d puzzles in the study of iron-based superconductors. In both spin- and orbital-nematic models, the intrinsic magnetic excitations at $mathbf{Q}_1=(1, 0)$ and $mathbf{Q}_2=(0, 1)$ of twin-free FeSe are expected to behave differently below $T_s$. Although anisotropic spin fluctuations below 10 meV between $mathbf{Q}_1$ and $mathbf{Q}_2$ have been unambiguously observed by inelastic neutron scattering around $T_c (<<T_s)$, it remains unclear whether such an anisotropy also persists at higher energies and associates with the nematic transition $T_s$. Here we use resonant inelastic x-ray scattering (RIXS) to probe the high-energy magnetic excitations of uniaxial-strain detwinned FeSe. A prominent anisotropy between the magnetic excitations along the $H$ and $K$ directions is found to persist to $sim200$ meV, which is even more pronounced than the anisotropy of spin waves in BaFe$_2$As$_2$. This anisotropy decreases gradually with increasing temperature and finally vanishes at a temperature around the nematic transition temperature $T_s$. Our results reveal an unprecedented strong spin-excitation anisotropy with a large energy scale well above the $d_{xz}/d_{yz}$ orbital splitting, suggesting that the nematic phase transition is primarily spin-driven. Moreover, the measured high-energy spin excitations are dispersive and underdamped, which can be understood from a local-moment perspective. Our findings provide the much-needed understanding of the mechanism for the nematicity of FeSe and point to a unified description of the correlation physics across seemingly distinct classes of Fe-based superconductors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا