ترغب بنشر مسار تعليمي؟ اضغط هنا

Task-Based Hybrid Shared Control for Training Through Forceful Interaction

239   0   0.0 ( 0 )
 نشر من قبل Todd Murphey
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Despite the fact that robotic platforms can provide both consistent practice and objective assessments of users over the course of their training, there are relatively few instances where physical human robot interaction has been significantly more effective than unassisted practice or human-mediated training. This paper describes a hybrid shared control robot, which enhances task learning through kinesthetic feedback. The assistance assesses user actions using a task-specific evaluation criterion and selectively accepts or rejects them at each time instant. Through two human subject studies (total n=68), we show that this hybrid approach of switching between full transparency and full rejection of user inputs leads to increased skill acquisition and short-term retention compared to unassisted practice. Moreover, we show that the shared control paradigm exhibits features previously shown to promote successful training. It avoids user passivity by only rejecting user actions and allowing failure at the task. It improves performance during assistance, providing meaningful task-specific feedback. It is sensitive to initial skill of the user and behaves as an `assist-as-needed control scheme---adapting its engagement in real time based on the performance and needs of the user. Unlike other successful algorithms, it does not require explicit modulation of the level of impedance or error amplification during training and it is permissive to a range of strategies because of its evaluation criterion. We demonstrate that the proposed hybrid shared control paradigm with a task-based minimal intervention criterion significantly enhances task-specific training.



قيم البحث

اقرأ أيضاً

108 - Michael Bowman , Jiucai Zhang , 2020
Shared control in teleoperation for providing robot assistance to accomplish object manipulation, called telemanipulation, is a new promising yet challenging problem. This has unique challenges--on top of teleoperation challenges in general--due to d ifficulties of physical discrepancy between human hands and robot hands as well as the fine motion constraints to constitute task success. We present an intuitive shared-control strategy where the focus is on generating robotic grasp poses which are better suited for human perception of successful teleoperated object manipulation and feeling of being in control of the robot, rather than developing objective stable grasp configurations for task success or following the human motion. The former is achieved by understanding human intent and autonomously taking over control on that inference. The latter is achieved by considering human inputs as hard motion constraints which the robot must abide. An arbitration of these two enables a trade-off for the subsequent robot motion to balance accomplishing the inferred task and motion constraints imposed by the operator. The arbitration framework adapts to the level of physical discrepancy between the human and different robot structures, enabling the assistance to indicate and appear to intuitively follow the user. To understand how users perceive good arbitration in object telemanipulation, we have conducted a user study with a hands-free telemanipulation setup to analyze the effect of factors including task predictability, perceived following, and user preference. The hands-free telemanipulation scene is chosen as the validation platform due to its more urgent need of intuitive robotics assistance for task success.
We design and develop a new shared Augmented Reality (AR) workspace for Human-Robot Interaction (HRI), which establishes a bi-directional communication between human agents and robots. In a prototype system, the shared AR workspace enables a shared p erception, so that a physical robot not only perceives the virtual elements in its own view but also infers the utility of the human agent--the cost needed to perceive and interact in AR--by sensing the human agents gaze and pose. Such a new HRI design also affords a shared manipulation, wherein the physical robot can control and alter virtual objects in AR as an active agent; crucially, a robot can proactively interact with human agents, instead of purely passively executing received commands. In experiments, we design a resource collection game that qualitatively demonstrates how a robot perceives, processes, and manipulates in AR and quantitatively evaluates the efficacy of HRI using the shared AR workspace. We further discuss how the system can potentially benefit future HRI studies that are otherwise challenging.
We propose a novel criterion for evaluating user input for human-robot interfaces for known tasks. We use the mode insertion gradient (MIG)---a tool from hybrid control theory---as a filtering criterion that instantaneously assesses the impact of use r actions on a dynamic system over a time window into the future. As a result, the filter is permissive to many chosen strategies, minimally engaging, and skill-sensitive---qualities desired when evaluating human actions. Through a human study with 28 healthy volunteers, we show that the criterion exhibits a low, but significant, negative correlation between skill level, as estimated from task-specific measures in unassisted trials, and the rate of controller intervention during assistance. Moreover, a MIG-based filter can be utilized to create a shared control scheme for training or assistance. In the human study, we observe a substantial training effect when using a MIG-based filter to perform cart-pendulum inversion, particularly when comparing improvement via the RMS error measure. Using simulation of a controlled spring-loaded inverted pendulum (SLIP) as a test case, we observe that the MIG criterion could be used for assistance to guarantee either task completion or safety of a joint human-robot system, while maintaining the systems flexibility with respect to user-chosen strategies.
Shared autonomy enables robots to infer user intent and assist in accomplishing it. But when the user wants to do a new task that the robot does not know about, shared autonomy will hinder their performance by attempting to assist them with something that is not their intent. Our key idea is that the robot can detect when its repertoire of intents is insufficient to explain the users input, and give them back control. This then enables the robot to observe unhindered task execution, learn the new intent behind it, and add it to this repertoire. We demonstrate with both a case study and a user study that our proposed method maintains good performance when the humans intent is in the robots repertoire, outperforms prior shared autonomy approaches when it isnt, and successfully learns new skills, enabling efficient lifelong learning for confidence-based shared autonomy.
Many tasks, particularly those involving interaction with the environment, are characterized by high variability, making robotic autonomy difficult. One flexible solution is to introduce the input of a human with superior experience and cognitive abi lities as part of a shared autonomy policy. However, current methods for shared autonomy are not designed to address the wide range of necessary corrections (e.g., positions, forces, execution rate, etc.) that the user may need to provide to address task variability. In this paper, we present corrective shared autonomy, where users provide corrections to key robot state variables on top of an otherwise autonomous task model. We provide an instantiation of this shared autonomy paradigm and demonstrate its viability and benefits such as low user effort and physical demand via a system-level user study on three tasks involving variability situated in aircraft manufacturing.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا