ترغب بنشر مسار تعليمي؟ اضغط هنا

Unexpected curves in $mathbb{P}^2$, line arrangements, and minimal degree of Jacobian relations

111   0   0.0 ( 0 )
 نشر من قبل Alexandru Dimca
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English
 تأليف Alexandru Dimca




اسأل ChatGPT حول البحث

We reformulate a fundamental result due to Cook, Harbourne, Migliore and Nagel on the existence and irreduciblity of unexpected plane curves of a set of points $Z$ in $mathbb{P}^2$, using the minimal degree of a Jacobian syzygy of the defining equation for the dual line arrangement $mathcal A_Z$. Several applications of this new approach are given. In particular, we show that the irreducible unexpected quintics may occur only when the set $Z$ has the cardinality equal to 11 or 12, and describe five cases where this happens.



قيم البحث

اقرأ أيضاً

In this paper we investigate special arrangements of lines in multiprojective spaces. In particular, we characterize codimensional two arithmetically Cohen-Macaulay (ACM) varieties in $mathbb P^1timesmathbb P^1timesmathbb P^1$, called varieties of li nes. We also describe their ACM property from combinatorial algebra point of view.
For a reduced hypersurface $V(f) subseteq mathbb{P}^n$ of degree $d$, the Castelnuovo-Mumford regularity of the Milnor algebra $M(f)$ is well understood when $V(f)$ is smooth, as well as when $V(f)$ has isolated singularities. We study the regularity of $M(f)$ when $V(f)$ has a positive dimensional singular locus. In certain situations, we prove that the regularity is bounded by $(d-2)(n+1)$, which is the degree of the Hessian polynomial of $f$. However, this is not always the case, and we prove that in $mathbb{P}^n$ the regularity of the Milnor algebra can grow quadratically in $d$.
By way of Ziegler restrictions we study the relation between nearly free plane arrangements and combinatorics and we give a Yoshinaga-type criterion for plus-one generated plane arrangements.
A projectively normal Calabi-Yau threefold $X subseteq mathbb{P}^n$ has an ideal $I_X$ which is arithmetically Gorenstein, of Castelnuovo-Mumford regularity four. Such ideals have been intensively studied when $I_X$ is a complete intersection, as wel l as in the case where $X$ is codimension three. In the latter case, the Buchsbaum-Eisenbud theorem shows that $I_X$ is given by the Pfaffians of a skew-symmetric matrix. A number of recent papers study the situation when $I_X$ has codimension four. We prove there are 16 possible betti tables for an arithmetically Gorenstein ideal $I$ with $mathrm{codim}(I)=4=mathrm{reg}(I)$, and that exactly 8 of these occur for smooth irreducible nondegenerate threefolds. We investigate the situation in codimension five or more, obtaining examples of $X$ with $h^{p,q}(X)$ not among those appearing for $I_X$ of lower codimension or as complete intersections in toric Fano varieties. A key tool in our approach is the use of inverse systems to identify possible betti tables for $X$.
Let $rho_C$ be the regularity of the Hilbert function of a projective curve $C$ in $mathbb P^n_K$ over an algebraically closed field $K$ and $alpha_1,...,alpha_{n-1}$ be minimal degrees for which there exists a complete intersection of type $(alpha_1 ,...,alpha_{n-1})$ containing the curve $C$. Then the Castelnuovo-Mumford regularity of $C$ is upper bounded by $max{rho_C+1,alpha_1+...+alpha_{n-1}-(n-2)}$. We study and, for space curves, refine the above bound providing several examples.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا