ﻻ يوجد ملخص باللغة العربية
In this paper, we provide a graphic formulation of non-isothermal reaction systems and show that a non-isothermal detailed balanced network system converges (locally) asymptotically to the unique equilibrium within the invariant manifold determined by the initial condition. To model thermal effects, the proposed modeling approach extends the classical chemical reaction network by adding two parameters to each direct (reaction) edge, depicting, respectively, the instantaneous internal energy change after the firing of the reaction and the variation of the reaction rate with respect to the temperature. For systems possessing thermodynamic equilibria, our modeling approach provides a compact formulation of the dynamics where reaction topology and thermodynamic information are presented simultaneously. Finally, using this formulation and the Legendre transformation, we show that non-isothermal detailed balanced network systems admit some fundamental properties: dissipativeness, the detailed balancing of each equilibrium, the existence and uniqueness of the equilibrium, and the asymptotic stability of each equilibrium. In general, the analysis and results of this work provide insights into the research of non-isothermal chemical reaction systems.
Very often, models in biology, chemistry, physics, and engineering are systems of polynomial or power-law ordinary differential equations, arising from a reaction network. Such dynamical systems can be generated by many different reaction networks. O
A chemical reaction network (CRN) is composed of reactions that can be seen as interactions among entities called species, which exist within the system. Endowed with kinetics, CRN has a corresponding set of ordinary differential equations (ODEs). In
Many biochemical and industrial applications involve complicated networks of simultaneously occurring chemical reactions. Under the assumption of mass action kinetics, the dynamics of these chemical reaction networks are governed by systems of polyno
We study two specific measures of quality of chemical reaction networks, Precision and Sensitivity. The two measures arise in the study of sensory adaptation, in which the reaction network is viewed as an input-output system. Given a step change in i
This paper presents novel decomposition classes of chemical reaction networks (CRNs) derived from S-system kinetics. Based on the network decomposition theory initiated by Feinberg in 1987, we introduce the concept of incidence independent decomposit