ترغب بنشر مسار تعليمي؟ اضغط هنا

Scan-specific, Parameter-free Artifact Reduction in K-space (SPARK)

108   0   0.0 ( 0 )
 نشر من قبل Onur Beker
 تاريخ النشر 2019
  مجال البحث هندسة إلكترونية
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a convolutional neural network (CNN) approach that works synergistically with physics-based reconstruction methods to reduce artifacts in accelerated MRI. Given reconstructed coil k-spaces, our network predicts a k-space correction term for each coil. This is done by matching the difference between the acquired autocalibration lines and their erroneous reconstructions, and generalizing this error term over the entire k-space. Application of this approach on existing reconstruction methods show that SPARK suppresses reconstruction artifacts at high acceleration, while preserving and improving on detail in moderate acceleration rates where existing reconstruction algorithms already perform well; indicating robustness. Introduction Parallel

قيم البحث

اقرأ أيضاً

86 - Yamin Arefeen 2021
Purpose: To develop a scan-specific model that estimates and corrects k-space errors made when reconstructing accelerated Magnetic Resonance Imaging (MRI) data. Methods: Scan-Specific Artifact Reduction in k-space (SPARK) trains a convolutional-neu ral-network to estimate and correct k-space errors made by an input reconstruction technique by back-propagating from the mean-squared-error loss between an auto-calibration signal (ACS) and the input techniques reconstructed ACS. First, SPARK is applied to GRAPPA and demonstrates improved robustness over other scan-specific models, such as RAKI and residual-RAKI. Subsequent experiments demonstrate that SPARK synergizes with residual-RAKI to improve reconstruction performance. SPARK also improves reconstruction quality when applied to advanced acquisition and reconstruction techniques like 2D virtual coil (VC-) GRAPPA, 2D LORAKS, 3D GRAPPA without an integrated ACS region, and 2D/3D wave-encoded images. Results: SPARK yields 1.5x - 2x RMSE reduction when applied to GRAPPA and improves robustness to ACS size for various acceleration rates in comparison to other scan-specific techniques. When applied to advanced reconstruction techniques such as residual-RAKI, 2D VC-GRAPPA and LORAKS, SPARK achieves up to 20% RMSE improvement. SPARK with 3D GRAPPA also improves performance by ~2x and perceived image quality without a fully sampled ACS region. Finally, SPARK synergizes with non-cartesian 2D and 3D wave-encoding imaging by reducing RMSE between 20-25% and providing qualitative improvements. Conclusion: SPARK synergizes with physics-based acquisition and reconstruction techniques to improve accelerated MRI by training scan-specific models to estimate and correct reconstruction errors in k-space.
139 - Yi Xu , Longwen Gao , Kai Tian 2019
Video compression artifact reduction aims to recover high-quality videos from low-quality compressed videos. Most existing approaches use a single neighboring frame or a pair of neighboring frames (preceding and/or following the target frame) for thi s task. Furthermore, as frames of high quality overall may contain low-quality patches, and high-quality patches may exist in frames of low quality overall, current methods focusing on nearby peak-quality frames (PQFs) may miss high-quality details in low-quality frames. To remedy these shortcomings, in this paper we propose a novel end-to-end deep neural network called non-local ConvLSTM (NL-ConvLSTM in short) that exploits multiple consecutive frames. An approximate non-local strategy is introduced in NL-ConvLSTM to capture global motion patterns and trace the spatiotemporal dependency in a video sequence. This approximate strategy makes the non-local module work in a fast and low space-cost way. Our method uses the preceding and following frames of the target frame to generate a residual, from which a higher quality frame is reconstructed. Experiments on two datasets show that NL-ConvLSTM outperforms the existing methods.
Metal artifact reduction (MAR) in computed tomography (CT) is a notoriously challenging task because the artifacts are structured and non-local in the image domain. However, they are inherently local in the sinogram domain. Thus, one possible approac h to MAR is to exploit the latter characteristic by learning to reduce artifacts in the sinogram. However, if we directly treat the metal-affected regions in sinogram as missing and replace them with the surrogate data generated by a neural network, the artifact-reduced CT images tend to be over-smoothed and distorted since fine-grained details within the metal-affected regions are completely ignored. In this work, we provide analytical investigation to the issue and propose to address the problem by (1) retaining the metal-affected regions in sinogram and (2) replacing the binarized metal trace with the metal mask projection such that the geometry information of metal implants is encoded. Extensive experiments on simulated datasets and expert evaluations on clinical images demonstrate that our novel network yields anatomically more precise artifact-reduced images than the state-of-the-art approaches, especially when metallic objects are large.
Spinal surgery planning necessitates automatic segmentation of vertebrae in cone-beam computed tomography (CBCT), an intraoperative imaging modality that is widely used in intervention. However, CBCT images are of low-quality and artifact-laden due t o noise, poor tissue contrast, and the presence of metallic objects, causing vertebra segmentation, even manually, a demanding task. In contrast, there exists a wealth of artifact-free, high quality CT images with vertebra annotations. This motivates us to build a CBCT vertebra segmentation model using unpaired CT images with annotations. To overcome the domain and artifact gaps between CBCT and CT, it is a must to address the three heterogeneous tasks of vertebra segmentation, artifact reduction and modality translation all together. To this, we propose a novel anatomy-aware artifact disentanglement and segmentation network (A$^3$DSegNet) that intensively leverages knowledge sharing of these three tasks to promote learning. Specifically, it takes a random pair of CBCT and CT images as the input and manipulates the synthesis and segmentation via different decoding combinations from the disentangled latent layers. Then, by proposing various forms of consistency among the synthesized images and among segmented vertebrae, the learning is achieved without paired (i.e., anatomically identical) data. Finally, we stack 2D slices together and build 3D networks on top to obtain final 3D segmentation result. Extensive experiments on a large number of clinical CBCT (21,364) and CT (17,089) images show that the proposed A$^3$DSegNet performs significantly better than state-of-the-art competing methods trained independently for each task and, remarkably, it achieves an average Dice coefficient of 0.926 for unpaired 3D CBCT vertebra segmentation.
Recently, both supervised and unsupervised deep learning methods have been widely applied on the CT metal artifact reduction (MAR) task. Supervised methods such as Dual Domain Network (Du-DoNet) work well on simulation data; however, their performanc e on clinical data is limited due to domain gap. Unsupervised methods are more generalized, but do not eliminate artifacts completely through the sole processing on the image domain. To combine the advantages of both MAR methods, we propose an unpaired dual-domain network (U-DuDoNet) trained using unpaired data. Unlike the artifact disentanglement network (ADN) that utilizes multiple encoders and decoders for disentangling content from artifact, our U-DuDoNet directly models the artifact generation process through additions in both sinogram and image domains, which is theoretically justified by an additive property associated with metal artifact. Our design includes a self-learned sinogram prior net, which provides guidance for restoring the information in the sinogram domain, and cyclic constraints for artifact reduction and addition on unpaired data. Extensive experiments on simulation data and clinical images demonstrate that our novel framework outperforms the state-of-the-art unpaired approaches.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا