ﻻ يوجد ملخص باللغة العربية
Electric vehicles (EVs) are an eco-friendly alternative to vehicles with internal combustion engines. Despite their environmental benefits, the massive electricity demand imposed by the anticipated proliferation of EVs could jeopardize the secure and economic operation of the power grid. Hence, proper strategies for charging coordination will be indispensable to the future power grid. Coordinated EV charging schemes can be implemented as centralized, decentralized, and hierarchical systems, with the last two, referred to as distributed charging control systems. This paper reviews the recent literature of distributed charging control schemes, where the computations are distributed across multiple EVs and/or aggregators. First, we categorize optimization problems for EV charging in terms of operational aspects and cost aspects. Then under each category, we provide a comprehensive discussion on algorithms for distributed EV charge scheduling, considering the perspectives of the grid operator, the aggregator, and the EV user. We also discuss how certain algorithms proposed in the literature cope with various uncertainties inherent to distributed EV charging control problems. Finally, we outline several research directions that require further attention.
As an environment-friendly substitute for conventional fuel-powered vehicles, electric vehicles (EVs) and their components have been widely developed and deployed worldwide. The large-scale integration of EVs into power grid brings both challenges an
With the advances in the Internet of Things technology, electric vehicles (EVs) have become easier to schedule in daily life, which is reshaping the electric load curve. It is important to design efficient charging algorithms to mitigate the negative
We describe the architecture and algorithms of the Adaptive Charging Network (ACN), which was first deployed on the Caltech campus in early 2016 and is currently operating at over 100 other sites in the United States. The architecture enables real-ti
The proliferation of plug-in electric vehicles (PEVs) advocates a distributed paradigm for the coordination of PEV charging. Distinct from existing primal-dual decomposition or consensus methods, this paper proposes a cutting-plane based distributed
The Pacific Northwest Smart Grid Demonstration was an electricity grid modernization project conducted in the Northwest U.S. This paper presents the analysis of renewable generation at the Renewable Energy Park located in the City of Ellensburg, WA.