ﻻ يوجد ملخص باللغة العربية
At the present time, there are a number of measurements of $B$-decay observables that disagree with the predictions of the standard model. These discrepancies have been seen in processes governed by two types of decay: (i) $b to s mu^+ mu^-u$ and (ii) $b to c tau^- {bar u}$. In this talk, I review the experimental results, as well as the proposed new-physics explanations. We may be seeing the first signs of physics beyond the standard model.
While the LHC did not observe direct evidence for physics beyond the standard model, indirect hints for new physics were uncovered in the flavour sector in the decays $Bto K^*mu^+mu^-$, $Bto Kmu^+mu^-/Bto Ke^+e^-$, $B_stophimu^+mu^-$, $Bto D^{(*)}tau
Contributions to B - bar B mixing from physics beyond the standard model may be detected from CP-violating asymmetries in B decays. There exists the possibility of large new contributions that cannot be detected by first generation experiments becaus
We investigate the implications of the latest LHCb measurement of $R_K$ for NP explanations of the $B$ anomalies. The previous data could be explained if the $b to s mu^+ mu^-$ NP is in (I) $C_{9,{rm NP}}^{mumu}$ or (II) $C_{9,{rm NP}}^{mumu} = -C_{1
If new physics (NP) is present in B -> pi pi decays, it can affect the isospin I=2 or I=0 channels. In this paper, we discuss various methods for detecting and measuring this NP. The techniques have increasing amounts of theoretical hadronic input. I
Recent measurements of certain B decays indicate deviations from Standard Model (SM) predictions. We show that Supersymmetric effects can increase the Branching Ratios (BRs) of both $Bto D {tau} { u}_{tau}$ and $Bto D^ast {tau} { u}_{tau}$ with respe