ﻻ يوجد ملخص باللغة العربية
Life insurance cash flows become reserve dependent when contract conditions are modified during the contract term on condition that actuarial equivalence is maintained. As a result, insurance cash flows and prospective reserves depend on each other in a circular way, and it is a non-trivial problem to solve that circularity and make cash flows and prospective reserves well-defined. In Markovian models, the (stochastic) Thiele equation and the Cantelli Theorem are the standard tools for solving the circularity issue and for maintaining actuarial equivalence. This paper expands the stochastic Thiele equation and the Cantelli Theorem to non-Markovian frameworks and presents a recursive scheme for the calculation of multiple contract modifications.
Bernard et al. (2015) study an optimal insurance design problem where an individuals preference is of the rank-dependent utility (RDU) type, and show that in general an optimal contract covers both large and small losses. However, their contracts suf
We undertake an empirical analysis for the premium data of non-life insurance companies operating in India, in the paradigm of fitting the data for the parametric distribution of Lognormal and the extreme value based distributions of Generalized Extr
In this paper we propose a multi-state model for the evaluation of the conversion option contract. The multi-state model is based on age-indexed semi-Markov chains that are able to reproduce many important aspects that influence the valuation of the
This paper investigates Pareto optimal (PO, for short) insurance contracts in a behavioral finance framework, in which the insured evaluates contracts by the rank-dependent utility (RDU) theory and the insurer by the expected value premium principle.
In this article we solve the problem of maximizing the expected utility of future consumption and terminal wealth to determine the optimal pension or life-cycle fund strategy for a cohort of pension fund investors. The setup is strongly related to a