ﻻ يوجد ملخص باللغة العربية
We discuss the use of dispersion relations for the evaluation of the pseudoscalar contributions to the muon anomalous magnetic moment. We point out that, in the absence of experimental data, reconstruction of light-by-light scattering amplitudes from their absorptive parts is ambiguous and requires additional theoretical input. The need for an additional input makes dispersive computations of the hadronic light-by-light scattering contribution to g-2 akin to phenomenological models, in spite of pretense to the contrary. In particular, we argue that the recent proposal [1], based on the dispersive approach, satisfies short distance constraints at the expense of unjustifiably large deviations from the chiral limit.
The form factor that yields the light-by-light scattering contribution to the muon anomalous magnetic moment is computed in lattice QCD+QED and QED. A non-perturbative treatment of QED is used and is checked against perturbation theory. The hadronic
The $pi^0$ pole constitutes the lowest-lying singularity of the hadronic light-by-light (HLbL) tensor, and thus provides the leading contribution in a dispersive approach to HLbL scattering in the anomalous magnetic moment of the muon $(g-2)_mu$. It
We report the first result for the hadronic light-by-light scattering contribution to the muon anomalous magnetic moment with all errors systematically controlled. Several ensembles using 2+1 flavors of physical mass Mobius domain-wall fermions, gene
We report preliminary results for the hadronic light-by-light scattering contribution to the muon anomalous magnetic moment. Several ensembles using 2+1 flavors of Mobius domain-wall fermions, generated by the RBC/UKQCD collaborations, are employed t
The quark-connected part of the hadronic light-by-light scattering contribution to the muons anomalous magnetic moment is computed using lattice QCD with chiral fermions. We report several significant algorithmic improvements and demonstrate their ef