ترغب بنشر مسار تعليمي؟ اضغط هنا

Momentum Contrast for Unsupervised Visual Representation Learning

452   0   0.0 ( 0 )
 نشر من قبل Kaiming He
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We present Momentum Contrast (MoCo) for unsupervised visual representation learning. From a perspective on contrastive learning as dictionary look-up, we build a dynamic dictionary with a queue and a moving-averaged encoder. This enables building a large and consistent dictionary on-the-fly that facilitates contrastive unsupervised learning. MoCo provides competitive results under the common linear protocol on ImageNet classification. More importantly, the representations learned by MoCo transfer well to downstream tasks. MoCo can outperform its supervised pre-training counterpart in 7 detection/segmentation tasks on PASCAL VOC, COCO, and other datasets, sometimes surpassing it by large margins. This suggests that the gap between unsupervised and supervised representation learning has been largely closed in many vision tasks.



قيم البحث

اقرأ أيضاً

102 - Chen Wei , Huiyu Wang , Wei Shen 2020
Contrastive learning has been adopted as a core method for unsupervised visual representation learning. Without human annotation, the common practice is to perform an instance discrimination task: Given a query image crop, this task labels crops from the same image as positives, and crops from other randomly sampled images as negatives. An important limitation of this label assignment strategy is that it can not reflect the heterogeneous similarity between the query crop and each crop from other images, taking them as equally negative, while some of them may even belong to the same semantic class as the query. To address this issue, inspired by consistency regularization in semi-supervised learning on unlabeled data, we propose Consistent Contrast (CO2), which introduces a consistency regularization term into the current contrastive learning framework. Regarding the similarity of the query crop to each crop from other images as unlabeled, the consistency term takes the corresponding similarity of a positive crop as a pseudo label, and encourages consistency between these two similarities. Empirically, CO2 improves Momentum Contrast (MoCo) by 2.9% top-1 accuracy on ImageNet linear protocol, 3.8% and 1.1% top-5 accuracy on 1% and 10% labeled semi-supervised settings. It also transfers to image classification, object detection, and semantic segmentation on PASCAL VOC. This shows that CO2 learns better visual representations for these downstream tasks.
105 - Xiaoni Li , Yu Zhou , Yifei Zhang 2021
Self-supervised representation learning for visual pre-training has achieved remarkable success with sample (instance or pixel) discrimination and semantics discovery of instance, whereas there still exists a non-negligible gap between pre-trained mo del and downstream dense prediction tasks. Concretely, these downstream tasks require more accurate representation, in other words, the pixels from the same object must belong to a shared semantic category, which is lacking in the previous methods. In this work, we present Dense Semantic Contrast (DSC) for modeling semantic category decision boundaries at a dense level to meet the requirement of these tasks. Furthermore, we propose a dense cross-image semantic contrastive learning framework for multi-granularity representation learning. Specially, we explicitly explore the semantic structure of the dataset by mining relations among pixels from different perspectives. For intra-image relation modeling, we discover pixel neighbors from multiple views. And for inter-image relations, we enforce pixel representation from the same semantic class to be more similar than the representation from different classes in one mini-batch. Experimental results show that our DSC model outperforms state-of-the-art methods when transferring to downstream dense prediction tasks, including object detection, semantic segmentation, and instance segmentation. Code will be made available.
The instance discrimination paradigm has become dominant in unsupervised learning. It always adopts a teacher-student framework, in which the teacher provides embedded knowledge as a supervision signal for the student. The student learns meaningful r epresentations by enforcing instance spatial consistency with the views from the teacher. However, the outputs of the teacher can vary dramatically on the same instance during different training stages, introducing unexpected noise and leading to catastrophic forgetting caused by inconsistent objectives. In this paper, we first integrate instance temporal consistency into current instance discrimination paradigms, and propose a novel and strong algorithm named Temporal Knowledge Consistency (TKC). Specifically, our TKC dynamically ensembles the knowledge of temporal teachers and adaptively selects useful information according to its importance to learning instance temporal consistency. Experimental result shows that TKC can learn better visual representations on both ResNet and AlexNet on linear evaluation protocol while transfer well to downstream tasks. All experiments suggest the good effectiveness and generalization of our method.
In supervised learning, smoothing label or prediction distribution in neural network training has been proven useful in preventing the model from being over-confident, and is crucial for learning more robust visual representations. This observation m otivates us to explore ways to make predictions flattened in unsupervised learning. Considering that human-annotated labels are not adopted in unsupervised learning, we introduce a straightforward approach to perturb input image space in order to soften the output prediction space indirectly, meanwhile, assigning new label values in the unsupervised frameworks accordingly. Despite its conceptual simplicity, we show empirically that with the simple solution -- Unsupervised image mixtures (Un-Mix), we can learn more robust visual representations from the transformed input. Extensive experiments are conducted on CIFAR-10, CIFAR-100, STL-10, Tiny ImageNet and standard ImageNet with popular unsupervised methods SimCLR, BYOL, MoCo V1&V2, etc. Our proposed image mixture and label assignment strategy can obtain consistent improvement by 1~3% following exactly the same hyperparameters and training procedures of the base methods.
Inspired by the fact that human eyes continue to develop tracking ability in early and middle childhood, we propose to use tracking as a proxy task for a computer vision system to learn the visual representations. Modelled on the Catch game played by the children, we design a Catch-the-Patch (CtP) game for a 3D-CNN model to learn visual representations that would help with video-related tasks. In the proposed pretraining framework, we cut an image patch from a given video and let it scale and move according to a pre-set trajectory. The proxy task is to estimate the position and size of the image patch in a sequence of video frames, given only the target bounding box in the first frame. We discover that using multiple image patches simultaneously brings clear benefits. We further increase the difficulty of the game by randomly making patches invisible. Extensive experiments on mainstream benchmarks demonstrate the superior performance of CtP against other video pretraining methods. In addition, CtP-pretrained features are less sensitive to domain gaps than those trained by a supervised action recognition task. When both trained on Kinetics-400, we are pleasantly surprised to find that CtP-pretrained representation achieves much higher action classification accuracy than its fully supervised counterpart on Something-Something dataset. Code is available online: github.com/microsoft/CtP.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا