ترغب بنشر مسار تعليمي؟ اضغط هنا

Interplay of Charge Density Wave States and Strain at the Surface of CeTe$_{2}$

422   0   0.0 ( 0 )
 نشر من قبل Michael Boyer
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use scanning tunneling microscopy (STM) to study charge density wave (CDW) states in the rare-earth di-telluride, CeTe$_{2}$. In contrast to previous experimental and first-principles studies of the rare-earth di-tellurides, our STM measurements surprisingly detect a unidirectional CDW with $textit{q}$ ~ 0.28 $textit{a}$*, which is very close to what is found in experimental measurements of the related rare-earth tri-tellurides. Furthermore, in the vicinity of an extended sub-surface defect, we find spatially-separated as well as spatially-coexisting unidirectional CDWs at the surface of CeTe$_{2}$. We quantify the nanoscale strain and its variations induced by this defect, and establish a correlation between local lattice strain and the locally-established CDW states. Our measurements probe the fundamental properties of a weakly-bound two-dimensional Te-sheet, which experimental and theoretical work has previously established as the fundamental component driving much of the essential physics in both the rare-earth di- and tri-telluride compounds.

قيم البحث

اقرأ أيضاً

Topologically nontrivial materials host protected edge states associated with the bulk band inversion through the bulk-edge correspondence. Manipulating such edge states is highly desired for developing new functions and devices practically using the ir dissipation-less nature and spin-momentum locking. Here we introduce a transition-metal dichalcogenide VTe$_2$, that hosts a charge density wave (CDW) coupled with the band inversion involving V3$d$ and Te5$p$ orbitals. Spin- and angle-resolved photoemission spectroscopy with first-principles calculations reveal the huge anisotropic modification of the bulk electronic structure by the CDW formation, accompanying the selective disappearance of Dirac-type spin-polarized topological surface states that exist in the normal state. Thorough three dimensional investigation of bulk states indicates that the corresponding band inversion at the Brillouin zone boundary dissolves upon CDW formation, by transforming into anomalous flat bands. Our finding provides a new insight to the topological manipulation of matters by utilizing CDWs flexible characters to external stimuli.
Using ab initio methods based on density functional theory, the electronic and magnetic structure of layered hexagonal NbSe$_{2}$ is studied. In the case of single-layer NbSe$_{2}$ it is found that, for all the functionals considered, the magnetic so lution is lower in energy than the non-magnetic solution. The magnetic ground-state is ferrimagnetic with a magnetic moment of 1.09 $mu_{B}$ at the Nb atoms and a magnetic moment of 0.05 $mu_{B}$, in the opposite direction, at the Se atoms. Our calculations show that single-layer NbSe$_{2}$ does not display a charge density wave instability unless a graphene layer is considered as a substrate. Then, two kinds of 3$times$3 charge density waves are found, which are observed in our STM experiments. This suggest that the driving force of charge instabilities in NbSe$_{2}$ differ in bulk and in the single-layer limit. Our work sets magnetism into play in this highly-correlated 2D material, which is crucial to understand the formation mechanisms of 2D superconductivity and charge density wave order.
We report a rectangular charge density wave (CDW) phase in strained 1T-VSe$_2$ thin films synthesized by molecular beam epitaxy on c-sapphire substrates. The observed CDW structure exhibits an unconventional rectangular 4a{times}{sqrt{3a}} periodicit y, as opposed to the previously reported hexagonal $4atimes4a$ structure in bulk crystals and exfoliated thin layered samples. Tunneling spectroscopy shows a strong modulation of the local density of states of the same $4atimessqrt{3}a$ CDW periodicity and an energy gap of $2Delta_{CDW}=(9.1pm0.1)$ meV. The CDW energy gap evolves into a full gap at temperatures below 500 mK, indicating a transition to an insulating phase at ultra-low temperatures. First-principles calculations confirm the stability of both $4atimes4a$ and $4atimessqrt{3}a$ structures arising from soft modes in the phonon dispersion. The unconventional structure becomes preferred in the presence of strain, in agreement with experimental findings.
In this paper, the completed investigation of a possible superconducting phase in monolayer indium selenide is determined using first-principles calculations for both the hole and electron doping systems. The hole-doped dependence of the Fermi surfac e is exclusively fundamental for monolayer InSe. It leads to the extensive modification of the Fermi surface from six separated pockets to two pockets by increasing the hole densities. For low hole doping levels of the system, below the Lifshitz transition point, superconductive critical temperatures $T_c sim 55-75$ K are obtained within anisotropic Eliashberg theory depending on varying amounts of the Coulomb potential from 0.2 to 0.1. However, for some hole doping above the Lifshitz transition point, the combination of the temperature dependence of the bare susceptibility and the strong electron-phonon interaction gives rise to a charge density wave that emerged at a temperature far above the corresponding $T_c$. Having included non-adiabatic effects, we could carefully analyze conditions for which either a superconductive or charge density wave phase occurs in the system. In addition, monolayer InSe becomes dynamically stable by including non-adiabatic effects for different carrier concentrations at room temperature.
Recently fabricated InSe monolayers exhibit remarkable characteristics that indicate the potential of this material to host a number of many-body phenomena. Here, we consistently describe collective electronic effects in hole-doped InSe monolayers us ing advanced many-body techniques. To this end, we derive a realistic electronic-structure model from first principles that takes into account the most important characteristics of this material, including a flat band with prominent van Hove singularities in the electronic spectrum, strong electron-phonon coupling, and weakly-screened long-ranged Coulomb interactions. We calculate the temperature-dependent phase diagram as a function of band filling and observe that this system is in a regime with coexisting charge density wave and ferromagnetic instabilities that are driven by strong electronic Coulomb correlations. This regime can be achieved at realistic doping levels and high enough temperatures, and can be verified experimentally. We find that the electron-phonon interaction does not play a crucial role in these effects, effectively suppressing the local Coulomb interaction without changing the qualitative physical picture.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا