ﻻ يوجد ملخص باللغة العربية
Motivated by mutation processes occurring in in-vivo DNA-storage applications, a channel that mutates stored strings by duplicating substrings as well as substituting symbols is studied. Two models of such a channel are considered: one in which the substitutions occur only within the duplicated substrings, and one in which the location of substitutions is unrestricted. Both error-detecting and error-correcting codes are constructed, which can handle correctly any number of tandem duplications of a fixed length $k$, and at most a single substitution occurring at any time during the mutation process.
Due to its high data density and longevity, DNA is considered a promising medium for satisfying ever-increasing data storage needs. However, the diversity of errors that occur in DNA sequences makes efficient error-correction a challenging task. This
Because of its high data density and longevity, DNA is emerging as a promising candidate for satisfying increasing data storage needs. Compared to conventional storage media, however, data stored in DNA is subject to a wider range of errors resulting
We describe and explore so-called linear hash functions and show how they can be used to build error detection and correction codes. The method can be applied for different types of errors (for example, burst errors). When the method is applied to a
Decreasing transistor sizes and lower voltage swings cause two distinct problems for communication in integrated circuits. First, decreasing inter-wire spacing increases interline capacitive coupling, which adversely affects transmission energy and d
Recent advances in DNA sequencing technology and DNA storage systems have rekindled the interest in deletion channels. Multiple recent works have looked at variants of sequence reconstruction over a single and over multiple deletion channels, a notor