ﻻ يوجد ملخص باللغة العربية
The China Dark Matter Experiment (CDEX), located at the China Jinping Underground Laboratory (CJPL) whose overburden is about 2400m rock, aims at direct searches of light Weakly Interacting Massive Particles (WIMPs). A single-element 994-gram p-type point contact (PPC) germanium detector (CDEX-1B) runs inside a solid passive shielding system. To achieve lower background, a prototype 10kg PPC germanium detector array (CDEX-10), consisting of three detector strings with three germanium crystals each, is directly immersed in the liquid nitrogen. With the energy threshold of 160eV, the limits on WIMP-nucleus scattering are set by energy spectra and annual modulation analysis, respectively. Incorporating Migdal effect, the data of CDEX-1B are re-analyzed to search sub-GeV WIMPs. Finally, the future plan of CDEX experiment in CJPL-II is introduced.
We report constraints on the dark photon effective kinetic mixing parameter (${kappa}$) with data taken from two ${p}$-type point-contact germanium detectors of the CDEX-10 experiment at the China Jinping Underground Laboratory. The 90% confidence le
The DAMIC (Dark Matter in CCDs) experiment searches for the interactions of dark matter particles with the nuclei and the electrons in the silicon bulk of thick fully depleted charge-coupled devices (CCDs). Because of the low noise and low dark curre
Many extensions of the Standard Model of particle physics predict a parallel sector of a new U(1) symmetry, giving rise to hidden photons. These hidden photons are candidate particles for cold dark matter. They are expected to kinetically mix with re
PandaX is a large upgradable liquid-xenon detector system that can be used for both direct dark-matter detection and $^{136}$Xe double-beta decay search. It is located in the Jinping Deep-Underground Laboratory in Sichuan, China. The detector operate
The COHERENT experiment is well poised to test sub-GeV dark matter models using low-energy recoil detectors sensitive to coherent elastic neutrino-nucleus scattering (CEvNS) in the $pi$-DAR neutrino beam produced by the Spallation Neutron Source. We