ترغب بنشر مسار تعليمي؟ اضغط هنا

Observed glitches in 8 young pulsars

152   0   0.0 ( 0 )
 نشر من قبل Avishek Basu
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The abrupt change in the pulse period of a pulsar is called a pulsar glitch. In this paper, we present eleven pulsar glitches detected using the Ooty Radio Telescope (ORT) and the upgraded Giant Metrewave Radio Telescope (uGMRT) in high cadence timing observations of 8 pulsars. The measured relative amplitude of glitches ($Delta u/ u$) from our data ranges from $10^{-6}$ to $10^{-9}$. Among these glitches, three are new discoveries, being reported for the first time. We also reanalyze the largest pulsar glitch in the Crab pulsar (PSR J0534+2200) by fitting the ORT data to a new phenomenological model including the slow rise in the post-glitch evolution. We measure an exponential recovery of 30 days after the Vela glitch detected on MJD 57734 with a healing factor $Q=5.8times 10^{-3}$. Further, we report the largest glitch ($Delta u/ u = 3147.9 times 10^{-9}$) so far in PSR J1731$-$4744.

قيم البحث

اقرأ أيضاً

We argue that comparison with observations of theoretical models for the velocity distribution of pulsars must be done directly with the observed quantities, i.e. parallax and the two components of proper motion. We develop a formalism to do so, and apply it to pulsars with accurate VLBI measurements. We find that a distribution with two maxwellians improves significantly on a single maxwellian. The `mixed model takes into account that pulsars move away from their place of birth, a narrow region around the galactic plane. The best model has 42% of the pulsars in a maxwellian with average velocity sigma sqrt{8/pi}=120 km/s, and 58% in a maxwellian with average velocity 540 km/s. About 5% of the pulsars has a velocity at birth less than 60,km/s. For the youngest pulsars (tau_c<10 Myr), these numbers are 32% with 130 km/s, 68% with 520 km/s, and 3%, with appreciable uncertainties.
216 - S. Q. Zhou , J. P. Yuan , J. Zhang 2018
Data are gathered from the Parkes pulsar data archive of twelve young radio pulsars, with the intervals of data for each pulsar ranged between 2.8 years and 6.8 years. 31 glitches are identified by using phase connection from pulsar timing technology , ranging from $1.7times10^{-9}$ to $8.5times10^{-6}$ at the change in relative glitch sizes $Delta u/ u$, where $ u=1/P$ is the pulse frequency. 8 post-glitch behaviours of 13 published glitches are updated with 4 exponential recoveries observed. Detecting 18 new glitches has great significance, but only one exponential relaxation was discovered in these new glitches. The bimodal distribution of $Delta u/ u$, as before, is validated with peaks at $sim 10^{-6}$ and $sim 10^{-9}$. Moreover, all exponential decays were observed in large glitches, and have very low $Q$. It takes short time toward the extrapolation of the pre-glitch pulse frequency with the timescale of 40 or 80 days. Besides, most glitches exhibit a linear decrease in slow-down rate $|dot{ u}|$ and a permanent change in $ddot{ u}$ after glitch. In special, PSR J1341-6220 was detected 4 new glitches to compose a total of 27 glitches, rising in third place of the most actively glitching pulsars known with a glitch rate of $1.17$ glitches per year. Unusual post-glitch behaviours demonstrate long-lasting increase of $ u$ for hundreds of days in PSR J1112--6103 and PSR J1614--5048.
Several glitches have been observed in young, isolated radio pulsars, while a clear detection in accretion-powered X-ray pulsars is still lacking. We use the Pizzochero snowplow model for pulsar glitches as well as starquake models to determine for t he first time the expected properties of glitches in accreting pulsars and their observability. Since some accreting pulsars show accretion-induced long-term spin-up, we also investigate the possibility that anti-glitches occur in these stars. We find that glitches caused by quakes in a slow accreting neutron star are very rare and their detection extremely unlikely. On the contrary, glitches and anti-glitches caused by a transfer of angular momentum between the superfluid neutron vortices and the non-superfluid component may take place in accreting pulsars more often. We calculate the maximum jump in angular velocity of an anti-glitch and we find that it is expected to be about 1E-5 - 1E-4 rad/s. We also note that since accreting pulsars usually have rotational angular velocities lower than those of isolated glitching pulsars, both glitches and anti-glitches are expected to have long rise and recovery timescales compared to isolated glitching pulsars, with glitches and anti-glitches appearing as a simple step in angular velocity. Among accreting pulsars, we find that GX 1+4 is the best candidate for the detection of glitches with currently operating X-ray instruments and future missions such as the proposed Large Observatory for X-ray Timing (LOFT).
Timing observations from the Parkes 64-m radio telescope for 165 pulsars between 1990 and 2011 have been searched for period glitches. A total of 107 glitches were identified in 36 pulsars, where 61 have previously been reported and 46 are new discov eries. Glitch parameters were measured by fitting the timing residual data. Observed relative glitch sizes Delta u_g/ u range between 10^-10 and 10^-5, where u = 1/P is the pulse frequency. We confirm that the distribution of Delta u_g/ u is bimodal with peaks at approximately 10^-9 and 10^-6. Glitches are mostly observed in pulsars with characteristic ages between 10^3 and 10^5 years, with large glitches mostly occurring in the younger pulsars. Exponential post-glitch recoveries were observed for 27 large glitches in 18 pulsars. The fraction Q of the glitch that recovers exponentially also has a bimodal distribution. Large glitches generally have low Q, typically a few per cent, but large Q values are observed in both large and small glitches. Observed time constants for exponential recoveries ranged between 10 and 300 days with some tendency for longer timescales in older pulsars. Shorter timescale recoveries may exist but were not revealed by our data which typically have observation intervals of 2 - 4 weeks. For most of the 36 pulsars with observed glitches, there is a persistent linear increase in dot u in the inter-glitch interval. Where an exponential recovery is also observed, the effects of this are superimposed on the linear increase in dot u. In some cases, the slope of the linear recovery changes at the time of a glitch. The ddot u values characterising the linear changes in dot u are almost always positive and, after subtracting the magnetospheric component of the braking, are approximately proportional to the ratio of |dot u| and the inter-glitch interval, as predicted by vortex-creep models.
The Crab pulsar has suffered in 1975 and 1989 two glitches in which the frequency did not relaxed to the extrapolated pre-glitch value but rather spun up showing long-term changes in the frequency derivative dot Omega. This particular behaviour has b een interpreted as evidence for an evolution of the torque acting upon the star. A variable torque may be related to non-canonical braking indexes, for which some determinations have been possible. We briefly analyse in this work the consistency of postulating a growth in the angle between the magnetic moment and the rotation axis as the cause of such events. We show that this hypothesis leads to the determination of the initial period, initial and present angles, according to the assumed angle growth, for young pulsars whose respective braking indices n_{obs} and jerk parameters m_{obs} are known, and some insights on the equation of state.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا