ترغب بنشر مسار تعليمي؟ اضغط هنا

Star formation histories of the LEGUS dwarf galaxies (III): the non-bursty nature of 23 star forming dwarf galaxies

84   0   0.0 ( 0 )
 نشر من قبل Michele Cignoni
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English
 تأليف M. Cignoni




اسأل ChatGPT حول البحث

We derive the recent star formation histories of 23 active dwarf galaxies using HST observations from the Legacy Extragalactic UV Survey (LEGUS). We apply a color-magnitude diagram fitting technique using two independent sets of stellar models, PARSEC-COLIBRI and MIST. Despite the non-negligible recent activity, none of the 23 star forming dwarfs show enhancements in the last 100 Myr larger than three times the 100-Myr-average. The unweighted mean of the individual SFHs in the last 100 Myr is also consistent with a rather constant activity, irrespective of the atomic gas fraction. We confirm previous results that for dwarf galaxies the CMD-based average star formation rates (SFRs) are generally higher than the FUV-based SFR. For half of the sample, the 60-Myr-average CMD-based SFR is more than two times the FUV SFR. In contrast, we find remarkable agreement between the 10-Myr-average CMD-based SFR and the H${alpha}$-based SFR. Finally, using core helium burning stars of intermediate mass we study the pattern of star formation spatial progression over the past 60 Myr, and speculate on the possible triggers and connections of the star formation activity with the environment in which these galaxies live. Approximately half of our galaxies show spatial progression of star formation in the last 60 Myr, and/or very recent diffuse and off-center activity compared to RGB stars.



قيم البحث

اقرأ أيضاً

We present a detailed study of the Magellanic irregular galaxy NGC 4449 based on both archival and new photometric data from the Legacy Extragalactic UV Survey, obtained with the Hubble Space Telescope Advanced Camera for Surveys and Wide Field Camer a 3. Thanks to its proximity ($D=3.82pm 0.27$ Mpc) we reach stars 3 magnitudes fainter than the tip of the red giant branch in the F814W filter. The recovered star formation history spans the whole Hubble time, but due to the age-metallicity degeneracy of the red giant branch stars, it is robust only over the lookback time reached by our photometry, i.e. $sim 3$ Gyr. The most recent peak of star formation is around 10 Myr ago. The average surface density star formation rate over the whole galaxy lifetime is $0.01$ M$_{odot}$ yr$^{-1}$ kpc$^{-2}$. From our study it emerges that NGC 4449 has experienced a fairly continuous star formation regime in the last 1 Gyr with peaks and dips whose star formation rates differ only by a factor of a few. The very complex and disturbed morphology of NGC 4449 makes it an interesting galaxy for studies of the relationship between interactions and starbursts, and our detailed and spatially resolved analysis of its star formation history does indeed provide some hints on the connection between these two phenomena in this peculiar dwarf galaxy.
In this tutorial paper we summarize how the star formation (SF) history of a galactic region can be derived from the colour-magnitude diagram (CMD) of its resolved stars. The procedures to build synthetic CMDs and to exploit them to derive the SF his tories (SFHs) are described, as well as the corresponding uncertainties. The SFHs of resolved dwarf galaxies of all morphological types, obtained from the application of the synthetic CMD method, are reviewed and discussed. In short: 1) Only early-type galaxies show evidence of long interruptions in the SF activity; late-type dwarfs present rather continuous, or gasping, SF regimes; 2) A few early-type dwarfs have experienced only one episode of SF activity concentrated at the earliest epochs, whilst many others show extended or recurrent SF activity; 3) No galaxy experiencing now its first SF episode has been found yet; 4) No frequent evidence of strong SF bursts is found; 5) There is no significant difference in the SFH of dwarf irregulars and blue compact dwarfs, except for the current SF rates. Implications of these results on the galaxy formation scenarios are briefly discussed.
144 - M. Cignoni 2018
We use HST observations from the Legacy Extragalactic UV Survey to reconstruct the recent star formation histories (SFHs) of three actively star-forming dwarf galaxies, NGC4449, Holmberg II and NGC1705, from their UV color-magnitude diagrams (CMDs). We apply a CMD fitting technique using two independent sets of stellar isochrones, PARSEC-COLIBRI and MIST, to assess the uncertainties related to stellar evolution modelling. Irrespective of the adopted stellar models, all the three dwarfs are found to have had almost constant star formation rates (SFRs) in the last 100-200 Myr, with modest enhancements (a factor of $sim$2) above the 100 Myr-averaged-SFR. Significant differences among the three dwarfs are found in the overall SFR, the timing of the most recent peak and the SFR$/$area. The Initial Mass Function (IMF) of NGC1705 and Holmberg II is consistent with a Salpeter slope down to $approx$ 5 M$_{odot}$, whereas it is slightly flatter, s$=-2.0$, in NGC4449. The SFHs derived with the two different sets of stellar models are consistent with each other, except for some quantitative details, attributable to their input assumptions. They also share the drawback that all synthetic diagrams predict a clear separation in color between upper main sequence and helium burning stars, which is not apparent in the data. Since differential reddening, significant in NGC4449, or unresolved binaries dont appear to be sufficient to fill the gap, we suggest this calls for a revision of both sets of stellar evolutionary tracks.
84 - D.O. Cook 2019
We present the star cluster catalogs for 17 dwarf and irregular galaxies in the $HST$ Treasury Program Legacy ExtraGalactic UV Survey (LEGUS). Cluster identification and photometry in this subsample are similar to that of the entire LEGUS sample, but special methods were developed to provide robust catalogs with accurate fluxes due to low cluster statistics. The colors and ages are largely consistent for two widely used aperture corrections, but a significant fraction of the clusters are more compact than the average training cluster. However, the ensemble luminosity, mass, and age distributions are consistent suggesting that the systematics between the two methods are less than the random errors. When compared with the clusters from previous dwarf galaxy samples, we find that the LEGUS catalogs are more complete and provide more accurate total fluxes. Combining all clusters into a composite dwarf galaxy, we find that the luminosity and mass functions can be described by a power law with the canonical index of $-2$ independent of age and global SFR binning. The age distribution declines as a power law, with an index of $approx-0.80pm0.15$, independent of cluster mass and global SFR binning. This decline of clusters is dominated by cluster disruption since the combined star formation histories and integrated-light SFRs are both approximately constant over the last few hundred Myr. Finally, we find little evidence for an upper-mass cutoff ($<2sigma$) in the composite cluster mass function, and can rule out a truncation mass below $approx10^{4.5}$M$_{odot}$ but cannot rule out the existence of a truncation at higher masses.
We explore the quenching of low-mass galaxies (10^4 < Mstar < 10^8 Msun) as a function of lookback time using the star formation histories (SFHs) of 38 Local Group dwarf galaxies. The SFHs were derived from analyzing color-magnitude diagrams of resol ved stellar populations in archival Hubble Space Telescope/Wide Field Planetary Camera 2 imaging. We find: (1) Lower mass galaxies quench earlier than higher mass galaxies; (2) Inside of virial radius there is no correlation between a satellites current proximity to a massive host and its quenching epoch; (3) There are hints of systematic differences in quenching times of M31 and Milky Way (MW) satellites, although the sample sample size and uncertainties in the SFHs of M31 dwarfs prohibit definitive conclusions. Combined with literature results, we qualitatively consider the redshift evolution (z=0-1) of the quenched galaxy fraction over ~7 dex in stellar mass (10^4 < Mstar < 10^11.5 Msun). The quenched fraction of all galaxies generally increases toward the present, with both the lowest and highest mass systems exhibiting the largest quenched fractions at all redshifts. In contrast, galaxies between Mstar ~ 10^8-10^10 Msun have the lowest quenched fractions. We suggest that such intermediate-mass galaxies are the least efficient at quenching. Finally, we compare our quenching times with predictions for infall times of low-mass galaxies associated with the MW. We find that some of the lowest-mass satellites (e.g., CVn II, Leo IV) may have been quenched before infall while higher mass satellites (e.g., Leo I, Fornax) typically quench ~1-4 Gyr after infall.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا