ترغب بنشر مسار تعليمي؟ اضغط هنا

Examining the weak cosmic censorship conjecture of RN-AdS black holes via the new version of the gedanken experiment

95   0   0.0 ( 0 )
 نشر من قبل Jie Jiang
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Based on the new version of the gedanken experiment proposed by Sorce and Wald, we investigate the weak cosmic censorship conjecture (WCCC) for a Reissner-Nordstr{o}m-Anti-de Sitter (RN-AdS) black hole under the perturbation of extra matter fields. Firstly, we propose that the cosmological constant can be effectively derived from the matter fields and its value varies with the matter fields perturbing the black hole. Meanwhile, we assume that the perturbation satisfies the stability condition. This condition means that after a long time of the perturbation, the black hole solution also belongs to the family of the RN-AdS solution. After that, based on both the stability condition and the null energy condition, while using the off-shell variation method, the first-order and the second-order perturbation inequalities are derived respectively when the cosmological constant is considered as a dynamic variable. It is the first time to extend the two perturbation inequalities to contain the term of the press and volume of thermodynamics. Finally, we perform the two perturbation inequalities into testing the WCCC for the RN-AdS black hole under the second-order approximation of the perturbation. It is shown that if the variation of the cosmological constant is caused by the matter fields, while the stability condition and the null energy condition are all satisfied, the black hole cannot be destroyed after the perturbation. In other words, the WCCC for the RN-AdS black hole is valid under the second-order approximation of the perturbation.

قيم البحث

اقرأ أيضاً

In the framework of the new version of the gedanken experiments proposed by Sorce and Wald, we investigate the weak cosmic censorship conjecture (WCCC) for an Einstein-Maxwell-Dilaton-Axion (EMDA) black hole. Our result shows that no violations of WC CC can occur with the increase of the background solution parameters for this near-extremal EMDA black hole when the second order correction of the perturbations is taken into account. Namely, the near-extremal EMDA black hole cannot be over-charged or over-spun.
We produce the first concrete evidence that violation of the weak cosmic censorship conjecture can occur in asymptotically flat spaces of five dimensions by numerically evolving perturbed black rings. For certain thin rings, we identify a new, elasti c-type instability dominating the evolution, causing the system to settle to a spherical black hole. However, for sufficiently thin rings the Gregory-Laflamme mode is dominant, and the instability unfolds similarly to that of black strings, where the horizon develops a structure of bulges connected by necks which become ever thinner over time.
We study collisions of boosted rotating black holes in $D=6$ and 7 spacetime dimensions with a non-zero impact parameter. We find that there exists an open set of initial conditions such that the intermediate state of the collision is a dumbbell-like horizon which is unstable to a Gregory-Laflamme-type instability. As is usually the case for similar unstable configurations, the evolution of such an instability leads to a pinch off of the horizon in finite asymptotic time, thus forming a naked singularity. Hence, this is the first fully genuine violation of Weak Cosmic Censorship conjecture in higher dimensional asymptotically flat spacetimes.
66 - Deyou Chen 2018
The weak cosmic censorship conjecture in the near-extremal BTZ black hole has been tested by the test particles and fields. It was claimed that this black hole could be overspun. In this paper, we review the thermodynamics and weak cosmic censorship conjecture in BTZ black holes by the scattering of the scalar field. The first law of thermodynamics in the non-extremal BTZ black hole is recovered. For the extremal and near-extremal black holes, due to the divergence of the variation of the entropy, we test the weak cosmic censorship conjecture by evaluating the minimum values of the function $f$. Both of the extremal and near-extremal black holes cannot be overspun.
The evolution of black holes in confining boxes is interesting for a number of reasons, particularly because it mimics the global structure of Anti-de Sitter geometries. These are non-globally hyperbolic space-times and the Cauchy problem may only be well defined if the initial data is supplemented by boundary conditions at the time-like conformal boundary. Here, we explore the active role that boundary conditions play in the evolution of a bulk black hole system, by imprisoning a black hole binary in a box with mirror-like boundary conditions. We are able to follow the post-merger dynamics for up to two reflections off the boundary of the gravitational radiation produced in the merger. We estimate that about 15% of the radiation energy is absorbed by the black hole per interaction, whereas transfer of angular momentum from the radiation to the black hole is only observed in the first interaction. We discuss the possible role of superradiant scattering for this result. Unlike the studies with outgoing boundary conditions, both the Newman-Penrose scalars Psi_4 and Psi_0 are non-trivial in our setup, and we show that the numerical data verifies the expected relations between them.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا