ترغب بنشر مسار تعليمي؟ اضغط هنا

Dont Say That! Making Inconsistent Dialogue Unlikely with Unlikelihood Training

79   0   0.0 ( 0 )
 نشر من قبل Jason Weston
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Generative dialogue models currently suffer from a number of problems which standard maximum likelihood training does not address. They tend to produce generations that (i) rely too much on copying from the context, (ii) contain repetitions within utterances, (iii) overuse frequent words, and (iv) at a deeper level, contain logical flaws. In this work we show how all of these problems can be addressed by extending the recently introduced unlikelihood loss (Welleck et al., 2019) to these cases. We show that appropriate loss functions which regularize generated outputs to match human distributions are effective for the first three issues. For the last important general issue, we show applying unlikelihood to collected data of what a model should not do is effective for improving logical consistency, potentially paving the way to generative models with greater reasoning ability. We demonstrate the efficacy of our approach across several dialogue tasks.



قيم البحث

اقرأ أيضاً

Neural dialogue models have been widely adopted in various chatbot applications because of their good performance in simulating and generalizing human conversations. However, there exists a dark side of these models -- due to the vulnerability of neu ral networks, a neural dialogue model can be manipulated by users to say what they want, which brings in concerns about the security of practical chatbot services. In this work, we investigate whether we can craft inputs that lead a well-trained black-box neural dialogue model to generate targeted outputs. We formulate this as a reinforcement learning (RL) problem and train a Reverse Dialogue Generator which efficiently finds such inputs for targeted outputs. Experiments conducted on a representative neural dialogue model show that our proposed model is able to discover such desired inputs in a considerable portion of cases. Overall, our work reveals this weakness of neural dialogue models and may prompt further researches of developing corresponding solutions to avoid it.
Dialogue models trained on human conversations inadvertently learn to generate toxic responses. In addition to producing explicitly offensive utterances, these models can also implicitly insult a group or individual by aligning themselves with an off ensive statement. To better understand the dynamics of contextually offensive language, we investigate the stance of dialogue model responses in offensive Reddit conversations. Specifically, we create ToxiChat, a crowd-annotated dataset of 2,000 Reddit threads and model responses labeled with offensive language and stance. Our analysis reveals that 42% of human responses agree with toxic comments, whereas only 13% agree with safe comments. This undesirable behavior is learned by neural dialogue models, such as DialoGPT, which we show are two times more likely to agree with offensive comments. To enable automatic detection of offensive language, we fine-tuned transformer-based classifiers on ToxiChat that achieve 0.71 F1 for offensive labels and 0.53 Macro-F1 for stance labels. Finally, we quantify the effectiveness of controllable text generation (CTG) methods to mitigate the tendency of neural dialogue models to agree with offensive comments. Compared to the baseline, our best CTG model achieves a 19% reduction in agreement with offensive comments and produces 29% fewer offensive replies. Our work highlights the need for further efforts to characterize and analyze inappropriate behavior in dialogue models, in order to help make them safer. Our code and corpus are available at https://github.com/abaheti95/ToxiChat .
In this paper, we propose to use deep policy networks which are trained with an advantage actor-critic method for statistically optimised dialogue systems. First, we show that, on summary state and action spaces, deep Reinforcement Learning (RL) outp erforms Gaussian Processes methods. Summary state and action spaces lead to good performance but require pre-engineering effort, RL knowledge, and domain expertise. In order to remove the need to define such summary spaces, we show that deep RL can also be trained efficiently on the original state and action spaces. Dialogue systems based on partially observable Markov decision processes are known to require many dialogues to train, which makes them unappealing for practical deployment. We show that a deep RL method based on an actor-critic architecture can exploit a small amount of data very efficiently. Indeed, with only a few hundred dialogues collected with a handcrafted policy, the actor-critic deep learner is considerably bootstrapped from a combination of supervised and batch RL. In addition, convergence to an optimal policy is significantly sped up compared to other deep RL methods initialized on the data with batch RL. All experiments are performed on a restaurant domain derived from the Dialogue State Tracking Challenge 2 (DSTC2) dataset.
Current dialogue systems are not very engaging for users, especially when trained end-to-end without relying on proactive reengaging scripted strategies. Zhang et al. (2018) showed that the engagement level of end-to-end dialogue models increases whe n conditioning them on text personas providing some personalized back-story to the model. However, the dataset used in Zhang et al. (2018) is synthetic and of limited size as it contains around 1k different personas. In this paper we introduce a new dataset providing 5 million personas and 700 million persona-based dialogues. Our experiments show that, at this scale, training using personas still improves the performance of end-to-end systems. In addition, we show that other tasks benefit from the wide coverage of our dataset by fine-tuning our model on the data from Zhang et al. (2018) and achieving state-of-the-art results.
184 - Zhuosheng Zhang , Hai Zhao 2021
Pre-trained language models (PrLMs) have demonstrated superior performance due to their strong ability to learn universal language representations from self-supervised pre-training. However, even with the help of the powerful PrLMs, it is still chall enging to effectively capture task-related knowledge from dialogue texts which are enriched by correlations among speaker-aware utterances. In this work, we present SPIDER, Structural Pre-traIned DialoguE Reader, to capture dialogue exclusive features. To simulate the dialogue-like features, we propose two training objectives in addition to the original LM objectives: 1) utterance order restoration, which predicts the order of the permuted utterances in dialogue context; 2) sentence backbone regularization, which regularizes the model to improve the factual correctness of summarized subject-verb-object triplets. Experimental results on widely used dialogue benchmarks verify the effectiveness of the newly introduced self-supervised tasks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا