ترغب بنشر مسار تعليمي؟ اضغط هنا

On Architectures for Including Visual Information in Neural Language Models for Image Description

282   0   0.0 ( 0 )
 نشر من قبل Marc Tanti
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

A neural language model can be conditioned into generating descriptions for images by providing visual information apart from the sentence prefix. This visual information can be included into the language model through different points of entry resulting in different neural architectures. We identify four main architectures which we call init-inject, pre-inject, par-inject, and merge. We analyse these four architectures and conclude that the best performing one is init-inject, which is when the visual information is injected into the initial state of the recurrent neural network. We confirm this using both automatic evaluation measures and human annotation. We then analyse how much influence the images have on each architecture. This is done by measuring how different the output probabilities of a model are when a partial sentence is combined with a completely different image from the one it is meant to be combined with. We find that init-inject tends to quickly become less influenced by the image as more words are generated. A different architecture called merge, which is when the visual information is merged with the recurrent neural networks hidden state vector prior to output, loses visual influence much more slowly, suggesting that it would work better for generating longer sentences. We also observe that the merge architecture can have its recurrent neural network pre-trained in a text-only language model (transfer learning) rather than be initialised randomly as usual. This results in even better performance than the other architectures, provided that the source language model is not too good at language modelling or it will overspecialise and be less effective at image description generation. Our work opens up new avenues of research in neural architectures, explainable AI, and transfer learning.



قيم البحث

اقرأ أيضاً

This paper addresses the sensitivity of neural image caption generators to their visual input. A sensitivity analysis and omission analysis based on image foils is reported, showing that the extent to which image captioning architectures retain and a re sensitive to visual information varies depending on the type of word being generated and the position in the caption as a whole. We motivate this work in the context of broader goals in the field to achieve more explainability in AI.
Deep artificial neural networks (ANNs) can represent a wide range of complex functions. Implementing ANNs in Von Neumann computing systems, though, incurs a high energy cost due to the bottleneck created between CPU and memory. Implementation on neur omorphic systems may help to reduce energy demand. Conventional ANNs must be converted into equivalent Spiking Neural Networks (SNNs) in order to be deployed on neuromorphic chips. This paper presents a way to perform this translation. We map the ANN weights to SNN synapses layer-by-layer by forming a least-square-error approximation problem at each layer. An optimal set of synapse weights may then be found for a given choice of ANN activation function and SNN neuron. Using an appropriate constrained solver, we can generate SNNs compatible with digital, analog, or hybrid chip architectures. We present an optimal node pruning method to allow SNN layer sizes to be set by the designer. To illustrate this process, we convert three ANNs, including one convolutional network, to SNNs. In all three cases, a simple linear program solver was used. The experiments show that the resulting networks maintain agreement with the original ANN and excellent performance on the evaluation tasks. The networks were also reduced in size with little loss in task performance.
This paper presents a deep learning architecture for the semantic decoder component of a Statistical Spoken Dialogue System. In a slot-filling dialogue, the semantic decoder predicts the dialogue act and a set of slot-value pairs from a set of n-best hypotheses returned by the Automatic Speech Recognition. Most current models for spoken language understanding assume (i) word-aligned semantic annotations as in sequence taggers and (ii) delexicalisation, or a mapping of input words to domain-specific concepts using heuristics that try to capture morphological variation but that do not scale to other domains nor to language variation (e.g., morphology, synonyms, paraphrasing ). In this work the semantic decoder is trained using unaligned semantic annotations and it uses distributed semantic representation learning to overcome the limitations of explicit delexicalisation. The proposed architecture uses a convolutional neural network for the sentence representation and a long-short term memory network for the context representation. Results are presented for the publicly available DSTC2 corpus and an In-car corpus which is similar to DSTC2 but has a significantly higher word error rate (WER).
344 - Yinqiao Li , Chi Hu , Yuhao Zhang 2020
Neural architecture search (NAS) has advanced significantly in recent years but most NAS systems restrict search to learning architectures of a recurrent or convolutional cell. In this paper, we extend the search space of NAS. In particular, we prese nt a general approach to learn both intra-cell and inter-cell architectures (call it ESS). For a better search result, we design a joint learning method to perform intra-cell and inter-cell NAS simultaneously. We implement our model in a differentiable architecture search system. For recurrent neural language modeling, it outperforms a strong baseline significantly on the PTB and WikiText data, with a new state-of-the-art on PTB. Moreover, the learned architectures show good transferability to other systems. E.g., they improve state-of-the-art systems on the CoNLL and WNUT named entity recognition (NER) tasks and CoNLL chunking task, indicating a promising line of research on large-scale pre-learned architectures.
To realize robots that can understand human instructions and perform meaningful tasks in the near future, it is important to develop learned models that can understand referential language to identify common objects in real-world 3D scenes. In this p aper, we develop a spatial-language model for a 3D visual grounding problem. Specifically, given a reconstructed 3D scene in the form of a point cloud with 3D bounding boxes of potential object candidates, and a language utterance referring to a target object in the scene, our model identifies the target object from a set of potential candidates. Our spatial-language model uses a transformer-based architecture that combines spatial embedding from bounding-box with a finetuned language embedding from DistilBert and reasons among the objects in the 3D scene to find the target object. We show that our model performs competitively on visio-linguistic datasets proposed by ReferIt3D. We provide additional analysis of performance in spatial reasoning tasks decoupled from perception noise, the effect of view-dependent utterances in terms of accuracy, and view-point annotations for potential robotics applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا