ﻻ يوجد ملخص باللغة العربية
The higher order topological insulator (HOTI) has enticed enormous research interests owing to its novelty in supporting gapless states along the hinges of the crystal. Despite several theoretical predictions, enough experimental confirmation of HOTI state in crystalline solids is still lacking. It has been well known that interplay between topology and magnetism can give rise to various magnetic topological states including HOTI and Axion insulator states. Here using the high-resolution angle-resolved photoemission spectroscopy (ARPES) combined with the first-principles calculations, we report a systematic study on the electronic band topology across the magnetic phase transition in EuIn2As2 which possesses an antiferromagnetic ground state below 16 K. Antiferromagnetic EuIn2As2 has been predicted to host both the Axion insulator and HOTI phase. Our experimental results show the clear signature of the evolution of the topological state across the magnetic transition. Our study thus especially suited to understand the interaction of higher order topology with magnetism in materials.
Topological insulator with antiferromagnetic order can serve as an ideal platform for the realization of axion electrodynamics. In this paper, we report a systematic study of the axion topological insulator candidate EuIn$_2$As$_2$. A linear energy d
The local structures of 122-type paradium arsenides, namely BaPd$_2$As$_2$ and SrPd$_2$As$_2$, are examined by As K-edge extended x-ray absorption fine structure measurements to find a possible correlation between the variation of their superconducti
3D topological insulators, similar to the Dirac material graphene, host linearly dispersing states with unique properties and a strong potential for applications. A key, missing element in realizing some of the more exotic states in topological insul
We report an infrared spectroscopy study of the axion topological insulator candidate EuIn$_2$As$_2$ for which the Eu moments exhibit an A-type antiferromagnetic (AFM) order below $T_N simeq 18 mathrm{K}$. The low energy response is composed of a wea
An interface electron state at the junction between a three-dimensional topological insulator (TI) film of Bi2Se3 and a ferrimagnetic insulator film of Y3Fe5O12 (YIG) was investigated by measurements of angle-resolved photoelectron spectroscopy and X