ﻻ يوجد ملخص باللغة العربية
The divisor sequence of an irreducible element (textit{atom}) $a$ of a reduced monoid $H$ is the sequence $(s_n)_{nin mathbb{N}}$ where, for each positive integer $n$, $s_n$ denotes the number of distinct irreducible divisors of $a^n$. In this work we investigate which sequences of positive integers can be realized as divisor sequences of irreducible elements in Krull monoids. In particular, this gives a means for studying non-unique direct-sum decompositions of modules over local Noetherian rings for which the Krull-Remak-Schmidt property fails.
Let $H$ be a cancellative commutative monoid, let $mathcal{A}(H)$ be the set of atoms of $H$ and let $widetilde{H}$ be the root closure of $H$. Then $H$ is called transfer Krull if there exists a transfer homomorphism from $H$ into a Krull monoid. It
In this paper, we introduce a new graph whose vertices are the nonzero zero-divisors of commutative ring $R$ and for distincts elements $x$ and $y$ in the set $Z(R)^{star}$ of the nonzero zero-divisors of $R$, $x$ and $y$ are adjacent if and only if
We continue our study of the new extension of zero-divisor graph. We give a complete characterization for the possible diameters of $widetilde{Gamma}(R)$ and $widetilde{Gamma}(R[x_1,dots,x_n])$, we investigate the relation between the zero-divisor gr
Denote by p_k the k-th power sum symmetric polynomial n variables. The interpretation of the q-analogue of the binomial coefficient as Hilbert function leads us to discover that n consecutive power sums in n variables form a regular sequence. We cons
The MultiplicitySequence package for Macaulay2 computes the multiplicity sequence of a graded ideal in a standard graded ring over a field, as well as several invariants of monomial ideals related to integral dependence. We discuss two strategies imp