ﻻ يوجد ملخص باللغة العربية
We report nucleon mass, isovector vector and axial-vector charges, and tensor and scalar couplings, calculated using two recent 2+1-flavor dynamical domain-wall fermions lattice-QCD ensembles generated jointly by the RIKEN-BNL-Columbia and UKQCD collaborations. These ensembles were generated with Iwasaki $times$ dislocation-suppressing-determinant-ratio gauge action at inverse lattice spacing of 1.378(7) GeV and pion mass values of 249.4(3) and 172.3(3) MeV. The nucleon mass extrapolates to a value $m_N = 0.950(5)$ GeV at physical point. The isovector vector charge renormalizes to unity in the chiral limit, narrowly constraining excited-state contamination in the calculation. The ratio of the isovector axial-vector to vector charges shows a deficit of about ten percent. The tensor coupling no longer depends on mass and extrapolates to 1.04(5) in $overline {rm MS}$ 2-GeV renormalization at physical point, in a good agreement with the value obtained at the lightest mass in our previous calculations and other calculations that followed. The scalar charge, though noisier, does not show mass dependence and is in agreement with other calculations.
Analyses on possible systematics in some isovector nucleon observables in the RBC+UKQCD 2+1-flavor dynamical domain-wall fermion (DWF) lattice-QCD are presented. The vector charge, axial charge, quark momentum and helicity fractions, and transversity
The current status of the LHP and RBC joint calculations of the nucleon isovector form factors and low moments of structure functions with a 2+1-flavor dynamical domain-wall fermion (DWF) lattice-QCD ensemble at the physical pion mass generated by RB
Systematics in nucleon isovector vector, $g_V$, and axialvector, $g_A$, charges calculated on a 2+1-flavor dynamical domain-wall-fermions (DWF) ensemble at physical mass jointly generated by RIKEN-BNL-Columbia (RBC) and UKQCD Collaborations with latt
We present results on the axial, scalar and tensor isovector-couplings of the nucleon from 2+1 flavor lattice QCD with physical light quarks ($m_pi$ = 135 MeV) in large spatial volume of (10.8 fm)$^3$. The calculations are carried out with the PACS10
The RBC and UKQCD collaborations have been investigating hadron physics in numerical lattice quantum chromodynamics (QCD) with (2+1) flavors of dynamical domain wall fermions (DWF) quarks that preserves continuum-like chiral and flavor symmetries. Th