ترغب بنشر مسار تعليمي؟ اضغط هنا

The young massive SMC cluster NGC 330 seen by MUSE. I. Observations and stellar content

295   0   0.0 ( 0 )
 نشر من قبل Julia Bodensteiner
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A majority of massive stars are part of binary systems, a large fraction of which will inevitably interact during their lives. Binary-interaction products (BiPs), i.e. stars affected by such interaction, are expected to be commonly present in stellar populations. BiPs are thus a crucial ingredient in the understanding of stellar evolution. We aim to identify and characterize a statistically significant sample of BiPs by studying clusters of 10-40 Myr, an age at which binary population models predict the abundance of BiPs to be highest. One example of such a cluster is NGC 330 in the Small Magellanic Cloud. Using MUSE WFM-AO observations of NGC 330, we resolve the dense cluster core for the first time and are able to extract spectra of its entire massive star population. We develop an automated spectral classification scheme based on the equivalent widths of spectral lines in the red part of the spectrum. We characterize the massive star content of the core of NGC 330 which contains more than 200 B stars, 2 O stars, 6 A-type supergiants and 11 red supergiants. We find a lower limit on the Be star fraction of $32 pm 3%$ in the whole sample. It increases to at least $46 pm 10%$ when only considering stars brighter than V=17 mag. We estimate an age of the cluster core between 35 and 40 Myr and a total cluster mass of $88^{+17}_{-18} times 10^3 M_{odot}$. We find that the population in the cluster core is different than the population in the outskirts: while the stellar content in the core appears to be older than the stars in the outskirts, the Be star fraction and the observed binary fraction are significantly higher. Furthermore, we detect several BiP candidates that will be subject of future studies.

قيم البحث

اقرأ أيضاً

Observations of massive stars in young open clusters (< ~8 Myr) have shown that a majority of them are in binary systems, most of which will interact during their life. Populations of massive stars older than ~20 Myr allow us to probe the outcome of such interactions after many systems have experienced mass and angular momentum transfer. Using multi-epoch integral-field spectroscopy, we investigate the multiplicity properties of the massive-star population in NGC 330 (~40 Myr) in the Small Magellanic Cloud to search for imprints of stellar evolution on the multiplicity properties. From six epochs of VLT/MUSE observations supported by adaptive optics we extract spectra and measure radial velocities for stars brighter than F814W = 19. We identify single-lined spectroscopic binaries through significant RV variability as well as double-lined spectroscopic binaries, and quantify the observational biases for binary detection. The observed spectroscopic binary fraction is 13.2+/-2.0 %. Considering period and mass ratio ranges from log(P)=0.15-3.5, and q = 0.1-1.0, and a representative set of orbital parameter distributions, we find a bias-corrected close binary fraction of 34 +8 -7 %. This seems to decline for the fainter stars, which indicates either that the close binary fraction drops in the B-type domain, or that the period distribution becomes more heavily weighted towards longer orbital periods. Both fractions vary strongly in different regions of the color-magnitude diagram which probably reveals the imprint of the binary history of different groups of stars. We provide the first homogeneous RV study of a large sample of B-type stars at a low metallicity. The overall bias-corrected close binary fraction of B stars in NGC 330 is lower than the one reported for younger Galactic and LMC clusters. More data are needed to establish whether this result from an age or a metallicty effect.
The multiplicity properties of massive stars are one of the important outstanding issues in stellar evolution. Quantifying the binary statistics of all evolutionary phases is essential to paint a complete picture of how and when massive stars interac t with their companions, and to determine the consequences of these interactions. We investigate the multiplicity of an almost complete census of red supergiant stars (RSGs) in NGC 330, a young massive cluster in the SMC. Using a combination of multi-epoch HARPS and MUSE spectroscopy, we estimate radial velocities and assess the kinematic and multiplicity properties of 15 RSGs in NGC 330. Radial velocities are estimated to better than +/-100 m/s for the HARPS data. The line-of-sight velocity dispersion for the cluster is estimated as 3.20 +0.69-0.52 km/s. When virial equilibrium is assumed, the dynamical mass of the cluster is log (M{dyn} /M{sun}) = 5.20+/-0.17, in good agreement with previous upper limits. We detect significant radial velocity variability in our multi-epoch observations and distinguish between variations caused by atmospheric activity and those caused by binarity. The binary fraction of NGC 330 RSGs is estimated by comparisons with simulated observations of systems with a range of input binary fractions. In this way, we account for observational biases and estimate the intrinsic binary fraction for RSGs in NGC 330 as f{RSG} = 0.3+/-0.1 for orbital periods in the range 2.3< log P [days] <4.3, with q>0.1. Using the distribution of the luminosities of the RSG population, we estimate the age of NGC 330 to be 45+/-5 Myr and estimate a red straggler fraction of 50%. We estimate the binary fraction of RSGs in NGC 330 and conclude that it appears to be lower than that of main-sequence massive stars, which is expected because interactions between an RSG and a companion are assumed to effectively strip the RSG envelope.
As part of the ongoing effort to characterize the low-mass (sub)stellar population in a sample of massive young clusters, we have targeted the ~2 Myr old cluster NGC 2244. The distance to NGC 2244 from Gaia DR2 parallaxes is 1.59 kpc, with errors of 1% (statistical) and 11% (systematic). We used the Flamingos-2 near-infrared camera at the Gemini-South telescope for deep multi-band imaging of the central portion of the cluster (~2.4pc^2). We determined membership in a statistical manner, through a comparison of the clusters color-magnitude diagram to that of a control field. Masses and extinctions of the candidate members are then calculated with the help of evolutionary models, leading to the first initial mass function (IMF) of the cluster extending into the substellar regime, with the 90% completeness limit around 0.02 Msun. The IMF is well represented by a broken power law (dN/dM propto M^{-alpha}), with a break at ~0.4 Msun. The slope on the high mass side (0.4 - 7 Msun) is alpha=2.12+-0.08, close to the standard Salpeter slope. In the low-mass range (0.02 - 0.4 Msun), we find a slope alpha=1.03+-0.02, which is at the high end of the typical values obtained in nearby star-forming regions (alpha=0.5-1.0), but still in agreement within the uncertainties. Our results reveal no clear evidence for variations in the formation efficiency of brown dwarfs and very low-mass stars due to the presence of OB stars, or for a change in stellar densities. Our finding rules out photoevaporation and fragmentation of infalling filaments as substantial pathways for brown dwarf formation.
Westerlund 2 (Wd2) is the central ionizing star cluster of the ion{H}{2} region RCW~49 and the second most massive young star cluster (${rm M} = (3.6 pm 0.3)times 10^4,{rm M}_odot$) in the Milky Way. Its young age ($sim2,$Myr) and close proximity to the Sun ($sim 4,$kpc) makes it a perfect target to study stars emerging from their parental gas cloud, the large number of OB-stars and their feedback onto the gas, and the gas dynamics. We combine high-resolution multi-band photometry obtained in the optical and near-infrared with the textit{Hubble} Space Telescope (HST), and VLT/MUSE integral field spectroscopy to study the gas, the stars, and their interactions, simultaneously. In this paper we focus on a small, $64times64,{rm arcsec}^2$ region North of the main cluster center, which we call the Northern Bubble (NB), a circular cavity carved into the gas of the cluster region. Using MUSE data, we determined the spectral types of 17 stars in the NB from G9III to O7.5. With the estimation of these spectral types we add 2 O and 5 B-type stars to the previously published census of 37 OB-stars in Wd2. To measure radial velocities we extracted 72 stellar spectra throughout Wd2, including the 17 of the NB, and show that the cluster member stars follow a bimodal velocity distribution centered around $(8.10 pm 1.53),{rm km},{rm s}^{-1}$ and $(25.41 pm 1.57),{rm km},{rm s}^{-1}$ with a dispersion of $(4.52 pm 1.78),{rm km},{rm s}^{-1}$ and $(3.46 pm 1.29),{rm km},{rm s}^{-1}$, respectively. These are in agreement with CO($J=1$-2) studies of RCW~49 leaving cloud-cloud collision as a viable option for the formation scenario of Wd2. The bimodal distribution is also detected in the Gaia DR2 proper motions.
The VVV survey has allowed for an unprecedented number of multi-epoch observations of the southern Galactic plane. In a recent paper,13 massive young stellar objects(MYSOs) have already been identified within the highly variable(Delta Ks > 1 mag) YSO sample of another published work.This study aims to understand the general nature of variability in MYSOs.We present the first systematic study of variability in a large sample of candidate MYSOs.We examined the data for variability of the putative driving sources of all known Spitzer EGOs and bright 24 mu m sources coinciding with the peak of 870 mu m detected ATLASGAL clumps, a total of 718 targets. Of these, 190 point sources (139 EGOs and 51 non-EGOs) displayed variability (IQR > 0.05, Delta Ks > 0.15 mag). Light-curves(LCs) have been sub-classified into eruptive, dipper, fader, short-term-variable and long-period variable-YSO categories.Lomb-Scargle periodogram analysis of periodic LCs was carried out. 1 - 870 mu m spectral energy distributions of the variable sources were fitted with YSO models to obtain representative properties. 41% of the variable sources are represented by > 4Msun objects, and only 6% by > 8Msun objects.The highest-mass objects are mostly non-EGOs,deeply embedded.By placing them on the HR diagram we show that most lower mass,EGO type objects are concentrated on the putative birth-line position, while the luminous non-EGO type objects group around the ZAMS track.Some of the most luminous far infrared sources in the massive clumps and infrared quiet driving sources of EGOs have been missed out by this study owing to an uniform sample selection method.A high rate of detectable variability in EGO targets (139 out of 153 searched) implies that near-infrared variability in MYSOs is closely linked to the accretion phenomenon and outflow activity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا