ترغب بنشر مسار تعليمي؟ اضغط هنا

Perception-oriented Single Image Super-Resolution via Dual Relativistic Average Generative Adversarial Networks

124   0   0.0 ( 0 )
 نشر من قبل Yuan Ma
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

The presence of residual and dense neural networks which greatly promotes the development of image Super-Resolution(SR) have witnessed a lot of impressive results. Depending on our observation, although more layers and connections could always improve performance, the increase of model parameters is not conducive to launch application of SR algorithms. Furthermore, algorithms supervised by L1/L2 loss can achieve considerable performance on traditional metrics such as PSNR and SSIM, yet resulting in blurry and over-smoothed outputs without sufficient high-frequency details, namely low perceptual index(PI). Regarding the issues, this paper develops a perception-oriented single image SR algorithm via dual relativistic average generative adversarial networks. In the generator part, a novel residual channel attention block is proposed to recalibrate significance of specific channels, further increasing feature expression capabilities. Parameters of convolutional layers within each block are shared to expand receptive fields while maintain the amount of tunable parameters unchanged. The feature maps are subsampled using sub-pixel convolution to obtain reconstructed high-resolution images. The discriminator part consists of two relativistic average discriminators that work in pixel domain and feature domain, respectively, fully exploiting the prior that half of data in a mini-batch are fake. Different weighted combinations of perceptual loss and adversarial loss are utilized to supervise the generator to equilibrate perceptual quality and objective results. Experimental results and ablation studies show that our proposed algorithm can rival state-of-the-art SR algorithms, both perceptually(PI-minimization) and objectively(PSNR-maximization) with fewer parameters.

قيم البحث

اقرأ أيضاً

Among the major remaining challenges for single image super resolution (SISR) is the capacity to recover coherent images with global shapes and local details conforming to human vision system. Recent generative adversarial network (GAN) based SISR me thods have yielded overall realistic SR images, however, there are always unpleasant textures accompanied with structural distortions in local regions. To target these issues, we introduce the gradient branch into the generator to preserve structural information by restoring high-resolution gradient maps in SR process. In addition, we utilize a U-net based discriminator to consider both the whole image and the detailed per-pixel authenticity, which could encourage the generator to maintain overall coherence of the reconstructed images. Moreover, we have studied objective functions and LPIPS perceptual loss is added to generate more realistic and natural details. Experimental results show that our proposed method outperforms state-of-the-art perceptual-driven SR methods in perception index (PI), and obtains more geometrically consistent and visually pleasing textures in natural image restoration.
During training phase, more connections (e.g. channel concatenation in last layer of DenseNet) means more occupied GPU memory and lower GPU utilization, requiring more training time. The increase of training time is also not conducive to launch appli cation of SR algorithms. Thiss why we abandoned DenseNet as basic network. Futhermore, we abandoned this paper due to its limitation only applied on medical images. Please view our lastest work applied on general images at arXiv:1911.03464.
High-resolution magnetic resonance images can provide fine-grained anatomical information, but acquiring such data requires a long scanning time. In this paper, a framework called the Fused Attentive Generative Adversarial Networks(FA-GAN) is propose d to generate the super-resolution MR image from low-resolution magnetic resonance images, which can reduce the scanning time effectively but with high resolution MR images. In the framework of the FA-GAN, the local fusion feature block, consisting of different three-pass networks by using different convolution kernels, is proposed to extract image features at different scales. And the global feature fusion module, including the channel attention module, the self-attention module, and the fusion operation, is designed to enhance the important features of the MR image. Moreover, the spectral normalization process is introduced to make the discriminator network stable. 40 sets of 3D magnetic resonance images (each set of images contains 256 slices) are used to train the network, and 10 sets of images are used to test the proposed method. The experimental results show that the PSNR and SSIM values of the super-resolution magnetic resonance image generated by the proposed FA-GAN method are higher than the state-of-the-art reconstruction methods.
Deep Convolutional Neural Networks (DCNNs) have achieved impressive performance in Single Image Super-Resolution (SISR). To further improve the performance, existing CNN-based methods generally focus on designing deeper architecture of the network. H owever, we argue blindly increasing networks depth is not the most sensible way. In this paper, we propose a novel end-to-end Residual Neuron Attention Networks (RNAN) for more efficient and effective SISR. Structurally, our RNAN is a sequential integration of the well-designed Global Context-enhanced Residual Groups (GCRGs), which extracts super-resolved features from coarse to fine. Our GCRG is designed with two novelties. Firstly, the Residual Neuron Attention (RNA) mechanism is proposed in each block of GCRG to reveal the relevance of neurons for better feature representation. Furthermore, the Global Context (GC) block is embedded into RNAN at the end of each GCRG for effectively modeling the global contextual information. Experiments results demonstrate that our RNAN achieves the comparable results with state-of-the-art methods in terms of both quantitative metrics and visual quality, however, with simplified network architecture.
160 - Rewa Sood , Mirabela Rusu 2019
Acquiring High Resolution (HR) Magnetic Resonance (MR) images requires the patient to remain still for long periods of time, which causes patient discomfort and increases the probability of motion induced image artifacts. A possible solution is to ac quire low resolution (LR) images and to process them with the Super Resolution Generative Adversarial Network (SRGAN) to create a super-resolved version. This work applies SRGAN to MR images of the prostate and performs three experiments. The first experiment explores improving the in-plane MR image resolution by factors of 4 and 8, and shows that, while the PSNR and SSIM (Structural SIMilarity) metrics are lower than the isotropic bicubic interpolation baseline, the SRGAN is able to create images that have high edge fidelity. The second experiment explores anisotropic super-resolution via synthetic images, in that the input images to the network are anisotropically downsampl
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا