ﻻ يوجد ملخص باللغة العربية
We study the supercritical contact process on Galton-Watson trees and periodic trees. We prove that if the contact process survives weakly then it dominates a supercritical Crump-Mode-Jagers branching process. Hence the number of infected sites grows exponentially fast. As a consequence we conclude that the contact process dies out at the critical value $lambda_1$ for weak survival, and the survival probability $p(lambda)$ is continuous with respect to the infection rate $lambda$. Applying this fact, we show the contact process on a general periodic tree experiences two phase transitions in the sense that $lambda_1<lambda_2$, which confirms a conjecture of Staceys cite{Stacey}. We also prove that if the contact process survives strongly at $lambda$ then it survives strongly at a $lambda<lambda$, which implies that the process does not survive strongly at the critical value $lambda_2$ for strong survival.
Distinguishing between continuous and first-order phase transitions is a major challenge in random discrete systems. We study the topic for events with recursive structure on Galton-Watson trees. For example, let $mathcal{T}_1$ be the event that a Ga
A little over 25 years ago Pemantle pioneered the study of the contact process on trees, and showed that on homogeneous trees the critical values $lambda_1$ and $lambda_2$ for global and local survival were different. He also considered trees with pe
A little over 25 years ago Pemantle pioneered the study of the contact process on trees, and showed that the critical values $lambda_1$ and $lambda_2$ for global and local survival were different. Here, we will consider the case of trees in which the
The key to our investigation is an improved (and in a sense sharp) understanding of the survival time of the contact process on star graphs. Using these results, we show that for the contact process on Galton-Watson trees, when the offspring distribu
We consider the extinction time of the contact process on increasing sequences of finite graphs obtained from a variety of random graph models. Under the assumption that the infection rate is above the critical value for the process on the integer li