ترغب بنشر مسار تعليمي؟ اضغط هنا

Exponential growth and continuous phase transitions for the contact process on trees

97   0   0.0 ( 0 )
 نشر من قبل Xiangying Huang
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English
 تأليف Xiangying Huang




اسأل ChatGPT حول البحث

We study the supercritical contact process on Galton-Watson trees and periodic trees. We prove that if the contact process survives weakly then it dominates a supercritical Crump-Mode-Jagers branching process. Hence the number of infected sites grows exponentially fast. As a consequence we conclude that the contact process dies out at the critical value $lambda_1$ for weak survival, and the survival probability $p(lambda)$ is continuous with respect to the infection rate $lambda$. Applying this fact, we show the contact process on a general periodic tree experiences two phase transitions in the sense that $lambda_1<lambda_2$, which confirms a conjecture of Staceys cite{Stacey}. We also prove that if the contact process survives strongly at $lambda$ then it survives strongly at a $lambda<lambda$, which implies that the process does not survive strongly at the critical value $lambda_2$ for strong survival.



قيم البحث

اقرأ أيضاً

119 - Tobias Johnson 2020
Distinguishing between continuous and first-order phase transitions is a major challenge in random discrete systems. We study the topic for events with recursive structure on Galton-Watson trees. For example, let $mathcal{T}_1$ be the event that a Ga lton-Watson tree is infinite, and let $mathcal{T}_2$ be the event that it contains an infinite binary tree starting from its root. These events satisfy similar recursive properties: $mathcal{T}_1$ holds if and only if $mathcal{T}_1$ holds for at least one of the trees initiated by children of the root, and $mathcal{T}_2$ holds if and only if $mathcal{T}_2$ holds for at least two of these trees. The probability of $mathcal{T}_1$ has a continuous phase transition, increasing from 0 when the mean of the child distribution increases above 1. On the other hand, the probability of $mathcal{T}_2$ has a first-order phase transition, jumping discontinuously to a nonzero value at criticality. Given the recursive property satisfied by the event, we describe the critical child distributions where a continuous phase transition takes place. In many cases, we also characterize the event undergoing the phase transition.
A little over 25 years ago Pemantle pioneered the study of the contact process on trees, and showed that on homogeneous trees the critical values $lambda_1$ and $lambda_2$ for global and local survival were different. He also considered trees with pe riodic degree sequences, and Galton-Watson trees. Here, we will consider periodic trees in which the number of children in successive generation is $(n,a_1,ldots, a_k)$ with $max_i a_i le Cn^{1-delta}$ and $log(a_1 cdots a_k)/log n to b$ as $ntoinfty$. We show that the critical value for local survival is asymptotically $sqrt{c (log n)/n}$ where $c=(k-b)/2$. This supports Pemantles claim that the critical value is largely determined by the maximum degree, but it also shows that the smaller degrees can make a significant contribution to the answer.
A little over 25 years ago Pemantle pioneered the study of the contact process on trees, and showed that the critical values $lambda_1$ and $lambda_2$ for global and local survival were different. Here, we will consider the case of trees in which the degrees of vertices are periodic. We will compute bounds on $lambda_1$ and $lambda_2$ and for the corresponding critical values $lambda_g$ and $lambda_ell$ for branching random walk. Much of what we find for period two $(a,b)$ trees was known to Pemantle. However, two significant new results give sharp asymptotics for the critical value $lambda_2$ of $(1,n)$ trees and generalize that result to the $(a_1,ldots, a_k, n)$ tree when $max_i a_i le n^{1-epsilon}$ and $a_1 cdots a_k = n^b$. We also give results for $lambda_g$ and $lambda_ell$ on $(a,b,c)$ trees. Since the values come from solving cubic equations, the explicit formulas are not pretty, but it is surprising that they depend only on $a+b+c$ and $abc$.
The key to our investigation is an improved (and in a sense sharp) understanding of the survival time of the contact process on star graphs. Using these results, we show that for the contact process on Galton-Watson trees, when the offspring distribu tion (i) is subexponential the critical value for local survival $lambda_2=0$ and (ii) when it is geometric($p$) we have $lambda_2 le C_p$, where the $C_p$ are much smaller than previous estimates. We also study the critical value $lambda_c(n)$ for prolonged persistence on graphs with $n$ vertices generated by the configuration model. In the case of power law and stretched exponential distributions where it is known $lambda_c(n) to 0$ we give estimates on the rate of convergence. Physicists tell us that $lambda_c(n) sim 1/Lambda(n)$ where $Lambda(n)$ is the maximum eigenvalue of the adjacency matrix. Our results show that this is not correct.
We consider the extinction time of the contact process on increasing sequences of finite graphs obtained from a variety of random graph models. Under the assumption that the infection rate is above the critical value for the process on the integer li ne, in each case we prove that the logarithm of the extinction time divided by the size of the graph converges in probability to a (model-dependent) positive constant. The graphs we treat include various percolation models on increasing boxes of Z d or R d in their supercritical or percolative regimes (Bernoulli bond and site percolation, the occupied and vacant sets of random interlacements, excursion sets of the Gaussian free field, random geometric graphs) as well as supercritical Galton-Watson trees grown up to finite generations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا