ترغب بنشر مسار تعليمي؟ اضغط هنا

Assessing soundscape disturbance through hierarchical models and acoustic indices: a case study on a shelterwood logged northern Michigan forest

359   0   0.0 ( 0 )
 نشر من قبل Jeffrey Doser
 تاريخ النشر 2019
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

Assessing the effects of anthropogenic disturbances on wildlife is a necessary conservation task. The soundscape is a critical habitat component for acoustically communicating organisms, but the use of the soundscape as a tool for assessing disturbance impacts has been relatively unexplored until recently. Here we present a broad modeling framework for assessing disturbance impacts on soundscapes, which we apply to quantify the influence of a shelterwood logging on soundscapes in northern Michigan. Our modeling approach can be broadly applied to assess anthropogenic disturbance impacts on soundscapes. The approach accommodates inherent differences in control and treatment sites to improve inference about treatment effects, while also accounting for extraneous variables (e.g., rain) that influence acoustic indices. Recordings were obtained at 13 sites before and after a shelterwood logging. Four sites were in the logging region and nine sites served as control recordings outside the logging region. We quantify the soundscapes using common acoustic indices (Normalized Difference Soundscape Index (NDSI), Acoustic Entropy (H), Acoustic Complexity Index (ACI), Acoustic Evenness Index (AEI), Welch Power Spectral Density (PSD)) and build two hierarchical Bayesian models to quantify the changes in the soundscape over the study period. Our analysis reveals no long-lasting effects of the shelterwood logging on the soundscape diversity as measured by the NDSI, but analysis of H, AEI, and PSD suggest changes in the evenness of sounds across the frequency spectrum, indicating a potential shift in the avian species communicating in the soundscapes as a result of the logging. Acoustic recordings, in conjunction with this modeling framework, can deliver cost efficient assessment of disturbance impacts on the landscape and underlying biodiversity as represented through the soundscape.



قيم البحث

اقرأ أيضاً

Roads are a widespread feature of landscapes worldwide, and road traffic sound potentially makes nearby habitat unsuitable for acoustically communicating organisms. It is important to understand the influence of roads at the soundscape level to mitig ate negative impacts of road sound on individual species as well as subsequent effects on the surrounding landscape. We seek to characterize the relationship between anthropogenic and biological sounds in western New York and assess the extent to which available traffic data explains variability in anthropogenic noise. Recordings were obtained in the spring of 2016 at 18 sites throughout western New York. We used the Welch Power Spectral Density (PSD) at low frequencies (0.5-2 kHz) to represent anthropogenic noise and PSD values at higher frequencies (2-11 kHz) to represent biological sound. Relationships were modeled using a novel two-stage hierarchical Bayesian model utilizing beta regression and basis splines. Model results and map predictions illustrate that anthropogenic noise and biological sound have an inverse relationship, and anthropogenic noise is greatest in close proximity to high traffic volume roads. The predictions have large uncertainty, resulting from the temporal coarseness of public road data used as a proxy for traffic sound. Results suggest that finer temporal resolution traffic sound data, such as crowd-sourced time-indexed traffic data from geographic positioning systems, might better account for observed temporal changes in the soundscape. The use of such data, in combination with the proposed modeling framework, could have important implications for the development of sound management policies.
This paper presents a case study on short-term load forecasting for France, with emphasis on special days, such as public holidays. We investigate the generalisability to French data of a recently proposed approach, which generates forecasts for norm al and special days in a coherent and unified framework, by incorporating subjective judgment in univariate statistical models using a rule-based methodology. The intraday, intraweek, and intrayear seasonality in load are accommodated using a rule-based triple seasonal adaptation of a seasonal autoregressive moving average (SARMA) model. We find that, for application to French load, the method requires an important adaption. We also adapt a recently proposed SARMA model that accommodates special day effects on an hourly basis using indicator variables. Using a rule formulated specifically for the French load, we compare the SARMA models with a range of different benchmark methods based on an evaluation of their point and density forecast accuracy. As sophisticated benchmarks, we employ the rule-based triple seasonal adaptations of Holt-Winters-Taylor (HWT) exponential smoothing and artificial neural networks (ANNs). We use nine years of half-hourly French load data, and consider lead times ranging from one half-hour up to a day ahead. The rule-based SARMA approach generated the most accurate forecasts.
In early clinical test evaluations the potential benefits of the introduction of a new technology into the healthcare system are assessed in the challenging situation of limited available empirical data. The aim of these evaluations is to provide add itional evidence for the decision maker, who is typically a funder or the company developing the test, to evaluate which technologies should progress to the next stage of evaluation. In this paper we consider the evaluation of a diagnostic test for patients suffering from Chronic Obstructive Pulmonary Disease (COPD). We describe the use of graphical models, prior elicitation and uncertainty analysis to provide the required evidence to allow the test to progress to the next stage of evaluation. We specifically discuss inferring an influence diagram from a care pathway and conducting an elicitation exercise to allow specification of prior distributions over all model parameters. We describe the uncertainty analysis, via Monte Carlo simulation, which allowed us to demonstrate that the potential value of the test was robust to uncertainties. This paper provides a case study illustrating how a careful Bayesian analysis can be used to enhance early clinical test evaluations.
In a mouse intercross with more than 500 animals and genome-wide gene expression data on six tissues, we identified a high proportion (18%) of sample mix-ups in the genotype data. Local expression quantitative trait loci (eQTL; genetic loci influenci ng gene expression) with extremely large effect were used to form a classifier to predict an individuals eQTL genotype based on expression data alone. By considering multiple eQTL and their related transcripts, we identified numerous individuals whose predicted eQTL genotypes (based on their expression data) did not match their observed genotypes, and then went on to identify other individuals whose genotypes did match the predicted eQTL genotypes. The concordance of predictions across six tissues indicated that the problem was due to mix-ups in the genotypes (though we further identified a small number of sample mix-ups in each of the six panels of gene expression microarrays). Consideration of the plate positions of the DNA samples indicated a number of off-by-one and off-by-two errors, likely the result of pipetting errors. Such sample mix-ups can be a problem in any genetic study, but eQTL data allow us to identify, and even correct, such problems. Our methods have been implemented in an R package, R/lineup.
Imaging in clinical oncology trials provides a wealth of information that contributes to the drug development process, especially in early phase studies. This paper focuses on kinetic modeling in DCE-MRI, inspired by mixed-effects models that are fre quently used in the analysis of clinical trials. Instead of summarizing each scanning session as a single kinetic parameter -- such as median $ktrans$ across all voxels in the tumor ROI -- we propose to analyze all voxel time courses from all scans and across all subjects simultaneously in a single model. The kinetic parameters from the usual non-linear regression model are decomposed into unique components associated with factors from the longitudinal study; e.g., treatment, patient and voxel effects. A Bayesian hierarchical model provides the framework in order to construct a data model, a parameter model, as well as prior distributions. The posterior distribution of the kinetic parameters is estimated using Markov chain Monte Carlo (MCMC) methods. Hypothesis testing at the study level for an overall treatment effect is straightforward and the patient- and voxel-level parameters capture random effects that provide additional information at various levels of resolution to allow a thorough evaluation of the clinical trial. The proposed method is validated with a breast cancer study, where the subjects were imaged before and after two cycles of chemotherapy, demonstrating the clinical potential of this method to longitudinal oncology studies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا