ترغب بنشر مسار تعليمي؟ اضغط هنا

Hyperfine Splitting in the VALD Database of Spectral-line Parameters

122   0   0.0 ( 0 )
 نشر من قبل Yury Pakhomov V
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Vienna Atomic Line Database (VALD) has been supplemented with new data and new functionality -- the possibility of taking into account the effect of hyperfine splitting (HFS) of atomic levels in the analysis of line profiles. This has been done through the creation of an ancillary SQL database with the HFS constants for atomic levels of 58 isotopes of 30 neutral and singly-ionized atoms. The completeness of the collected data and new opportunities for studies of stars of various spectral types is analyzed. The database enables analysis of splitting of up to 60% of lines with measurable effects in the ultraviolet ($lambdagtrsim1000$~AA), and up to 100% of such lines in the optical and infrared ranges ($lambdalesssim25000$~AA) for A--M stars. In the spectra of hot O--B stars, it is necessary to use laboratory measurements for atoms in the second and higher stages of ionization.

قيم البحث

اقرأ أيضاً

Very accurate transition frequencies of HC$_5$N were determined between 5.3 and 21.4 GHz with a Fourier transform microwave spectrometer. The molecules were generated by passing a mixture of HC$_3$N and C$_2$H$_2$ highly diluted in neon through a dis charge valve followed by supersonic expansion into the Fabry-Perot cavity of the spectrometer. The accuracies of the data permitted us to improve the experimental $^{14}$N nuclear quadrupole coupling parameter considerably and the first experimental determination of the $^{14}$N nuclear spin-rotation parameter. The transition frequencies are also well suited to determine in astronomical observations the local speed of rest velocities in molecular clouds with high fidelity. The same setup was used to study HC$_7$N, albeit with modest improvement of the experimental $^{14}$N nuclear quadrupole coupling parameter. Quantum chemical calculations were carried out to determine $^{14}$N nuclear quadrupole and spin-rotation coupling parameters of HC$_5$N, HC$_7$N, and related molecules. These calculations included evaluation of vibrational and relativistic corrections to the non-relativistic equilibrium quadrupole coupling parameters; their considerations improved the agreement between calculated and experimental values substantially.
The EPOCH (EROS-2 periodic variable star classification using machine learning) project aims to detect periodic variable stars in the EROS-2 light curve database. In this paper, we present the first result of the classification of periodic variable s tars in the EROS-2 LMC database. To classify these variables, we first built a training set by compiling known variables in the Large Magellanic Cloud area from the OGLE and MACHO surveys. We crossmatched these variables with the EROS-2 sources and extracted 22 variability features from 28 392 light curves of the corresponding EROS-2 sources. We then used the random forest method to classify the EROS-2 sources in the training set. We designed the model to separate not only $delta$ Scuti stars, RR Lyraes, Cepheids, eclipsing binaries, and long-period variables, the superclasses, but also their subclasses, such as RRab, RRc, RRd, and RRe for RR Lyraes, and similarly for the other variable types. The model trained using only the superclasses shows 99% recall and precision, while the model trained on all subclasses shows 87% recall and precision. We applied the trained model to the entire EROS-2 LMC database, which contains about 29 million sources, and found 117 234 periodic variable candidates. Out of these 117 234 periodic variables, 55 285 have not been discovered by either OGLE or MACHO variability studies. This set comprises 1 906 $delta$ Scuti stars, 6 607 RR Lyraes, 638 Cepheids, 178 Type II Cepheids, 34 562 eclipsing binaries, and 11 394 long-period variables. A catalog of these EROS-2 LMC periodic variable stars will be available online at http://stardb.yonsei.ac.kr and at the CDS website (http://vizier.u-strasbg.fr/viz-bin/VizieR).
A methane line list for the HITEMP spectroscopic database, covering 0-13,400 cm$^{-1}$ ($>$746 nm), is presented. To create this compilation, ab initio line lists of $^{12}$CH$_{4}$ from Rey et al. (2017) ApJ, 847, 105 (provided at separate temperatu res in the TheoReTS information system), are now combined with HITRAN2016 methane data to produce a single line list suitable for high-temperature line-by-line calculations up to 2000 K. An effective-temperature interpolation model was created in order to represent continuum-like features at any temperature of interest. This model is advantageous to previously-used approaches that employ so-called ``super-lines, which are suitable only at a given temperature and require separate line lists for different temperatures. The resultant HITEMP line list contains $sim$32 million lines and is significantly more flexible than alternative line lists of methane, while accuracy required for astrophysical or combustion applications is retained. Comparisons against experimental observations of methane absorption at high temperatures have been used to demonstrate the accuracy of the new work. The line list includes both strong lines and quasi-continuum features and is provided in the common user-friendly HITRAN/HITEMP format, making it the most practical methane line list for radiative transfer modeling at high-temperature conditions.
The XMM-Newton spectral-fit database is an ongoing ESA funded project aimed to construct a catalogue of spectral-fitting results for all the sources within the XMM-Newton serendipitous source catalogue for which spectral data products have been pipel ine-extracted (~ 120,000 X-ray source detections). The fundamental goal of this project is to provide the astronomical community with a tool to construct large and representative samples of X-ray sources by allowing source selection according to spectral properties.
49 - G. Malloci , C. Joblin , G. Mulas 2007
We present an on-line database of computed molecular properties for a large sample of polycyclic aromatic hydrocarbons (PAHs) in four charge states: -1, 0, +1, and +2. At present our database includes 40 molecules ranging in size from naphthalene and azulene (C10H8) up to circumovalene (C66H20). We performed our calculations in the framework of the density functional theory (DFT) and the time-dependent DFT to obtain the most relevant molecular parameters needed for astrophysical applications. For each molecule in the sample, our database presents in a uniform way the energetic, rotational, vibrational, and electronic properties. It is freely accessible on the web at http://astrochemistry.ca.astro.it/database/ and http://www.cesr.fr/~joblin/database/.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا