ﻻ يوجد ملخص باللغة العربية
High-resolution laser-based angle-resolved photoemission measurements have been carried out on Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$ (Bi2212) and Bi$_2$Sr$_{2-x}$La$_x$CuO$_{6+delta}$ (Bi2201) superconductors. Unexpected hybridization between the main band and the superstructure band in Bi2212 is clearly revealed. In the momentum space where one main Fermi surface intersects with one superstructure Fermi surface, four bands are observed instead of two. The hybridization exists in both superconducting state and normal state, and in Bi2212 samples with different doping levels. Such a hybridization is not observed in Bi2201. This phenomenon can be understood by considering the bilayer splitting in Bi2212, the selective hybridization of two bands with peculiar combinations, and the altered matrix element effects of the hybridized bands. These observations provide strong evidence on the origin of the superstructure band which is intrinsic to the CuO$_2$ planes. Therefore, understanding physical properties and superconductivity mechanism in Bi2212 should consider the complete Fermi surface topology which involves the main bands, the superstructure bands and their interactions.
Establishing the presence and the nature of a quantum critical point in their phase diagram is a central enigma of the high-temperature superconducting cuprates. It could explain their pseudogap and strange metal phases, and ultimately their high sup
Fluctuating superconductivity - vestigial Cooper pairing in the resistive state of a material - is usually associated with low dimensionality, strong disorder or low carrier density. Here, we report single particle spectroscopic, thermodynamic and ma
We report tunneling spectra of near optimally doped Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$ intrinsic Josephson junctions with area of 0.09 $mu$m$^2$, which avoid some fundamental difficulties in the previous tunneling experiments and allow a stable temper
A magnetic field applied to type-II superconductors introduces quantized vortices that locally quench superconductivity, providing a unique opportunity to investigate electronic orders that may compete with superconductivity. This is especially true
Mixing of topological states with superconductivity could result in topological superconductivity with the elusive Majorana fermions potentially applicable in fault-tolerant quantum computing. One possible candidate considered for realization of topo