ترغب بنشر مسار تعليمي؟ اضغط هنا

Reviving $Z$ and Higgs Mediated Dark Matter Models in Matter Dominated Freeze-out

116   0   0.0 ( 0 )
 نشر من قبل Prolay Krishna Chanda
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

It is quite conceivable that dark matter freeze-out occurred during an early period of matter domination, in which case the evolution and relic abundance differ from standard freeze-out calculations which assume a radiation dominated universe. Here we re-examine the classic models in which dark matter interactions with the Standard Model are mediated via either the Higgs or $Z$ boson in the context of matter dominated freeze-out. We highlight that while these classic models are largely excluded by searches in the radiation dominated case, matter dominated freeze-out can relax these limits and thus revive the Higgs and $Z$ portals. Additionally, we discuss the distinctions between matter dominated freeze-out and decoupling during the transition from matter domination to radiation domination, and we comment on the parameter regimes which lead to non-negligible dark matter production during this transition.

قيم البحث

اقرأ أيضاً

We study the stochastic background of gravitational waves which accompany the sudden freeze-out of dark matter triggered by a cosmological first order phase transition that endows dark matter with mass. We consider models that produce the measured da rk matter relic abundance via (1) bubble filtering, and (2) inflation and reheating, and show that gravitational waves from these mechanisms are detectable at future interferometers.
Sterile neutrinos are one of the leading dark matter candidates. Their masses may originate from a vacuum expectation value of a scalar field. If the sterile neutrino couplings are very small and their direct coupling to the inflaton is forbidden by the lepton number symmetry, the leading dark matter production mechanism is the freeze-in scenario. We study this possibility in the neutrino mass range up to 1 GeV, taking into account relativistic production rates based on the Bose-Einstein statistics, thermal masses and phase transition effects. The specifics of the production mechanism and the dominant mode depend on the relation between the scalar and sterile neutrino masses as well as on whether or not the scalar is thermalized. We find that the observed dark matter abundance can be produced in all of the cases considered. We also revisit the freeze-in production of a Higgs portal scalar, pointing out the importance of a fusion mode, as well as the thermalization constraints.
We present an interesting Higgs portal model where an axion-like particle (ALP) couples to the Standard Model sector only via the Higgs field. The ALP becomes stable due to CP invariance and turns out to be a natural candidate for freeze-in dark matt er because its properties are controlled by the perturbative ALP shift symmetry. The portal coupling can be generated non-perturbatively by a hidden confining gauge sector, or radiatively by new leptons charged under the ALP shift symmetry. Such UV completions generally involve a CP violating phase, which makes the ALP unstable and decay through mixing with the Higgs boson, but can be sufficiently suppressed in a natural way by invoking additional symmetries.
We consider dark matter (DM) with very weak couplings to the standard model (SM), such that its self-annihilation cross section is much smaller than the canonical one, $langlesigma vrangle_{chichi} ll 10^{-26}mathrm{cm}^3/mathrm{s}$. In this case DM self-annihilation is negligible for the dynamics of freeze-out and DM dilution is solely driven by efficient annihilation of heavier accompanying dark sector particles provided that DM maintains chemical equilibrium with the dark sector. This chemical equilibrium is established by conversion processes which require much smaller couplings to be efficient than annihilation. The chemical decoupling of DM from the SM can either be initiated by the freeze-out of annihilation, resembling a co-annihilation scenario, or of conversion processes, leading to the scenario of conversion-driven freeze-out. We focus on the latter and discuss its distinct phenomenology.
We investigate whether right-handed neutrinos can play the role of the dark matter of the Universe and be generated by the freeze-out production mechanism. In the standard picture, the requirement of a long lifetime of the right-handed neutrinos impl ies a small neutrino Yukawa coupling. As a consequence, they never reach thermal equilibrium, thus prohibiting production by freeze-out. We note that this limitation is alleviated if the neutrino Yukawa coupling is large enough in the early Universe to thermalize the sterile neutrinos, and then becomes tiny at a certain moment, which makes them drop out of equilibrium. As a concrete example realization of this framework, we consider a Froggatt-Nielsen model supplemented by an additional scalar field which obeys a global symmetry (not the flavour symmetry). Initially, the vacuum expectation value of the flavon is such, that the effective neutrino Yukawa coupling is large and unsuppressed, keeping them in thermal equilibrium. At some point the new scalar also gets a vacuum expectation value that breaks the symmetry. This may occur in such a way that the vev of the flavon is shifted to a new (smaller) value. In that case, the Yukawa coupling is reduced such that the sterile neutrinos are rendered stable on cosmological time scales. We show that this mechanism works for a wide range of sterile neutrino masses.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا