ترغب بنشر مسار تعليمي؟ اضغط هنا

High-temperature superconductors: underlying physics and applications

73   0   0.0 ( 0 )
 نشر من قبل Annette Bussmann-Holder
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Superconductivity was discovered in 1911 by Kamerlingh Onnes and Holst in mercury at the temperature of liquid helium (4.2 K). It took almost 50 years until in 1957 a microscopic theory of superconductivity, the so-called BCS theory, was developed. Since the discovery a number of superconducting materials were found with transition temperatures up to 23 K. A breakthrough in the field happened in 1986 when Bednorz and Muller discovered a new class of superconductors, the so-called cuprate high-temperature superconductors with transition temperatures as high as 135 K. This surprising discovery initiated new efforts with respect to fundamental physics, material science, and technological applications. In this brief review the basic physics of the conventional low-temperature superconductors as well as of the high-temperature superconductors are presented with a brief introduction to applications exemplified from high-power to low-power electronic devices. Finally, a short outlook and future challenges are presented, finished with possible imaginations for applications of room-temperature superconductivity.



قيم البحث

اقرأ أيضاً

Two hydrogen-rich materials, H$_3$S and LaH$_{10}$, synthesized at megabar pressures, have revolutionized the field of condensed matter physics providing the first glimpse to the solution of the hundred-year-old problem of room temperature supercondu ctivity. The mechanism underlying superconductivity in these exceptional compounds is the conventional electron-phonon coupling. Here we describe recent advances in experimental techniques, superconductivity theory and first-principles computational methods which have made possible these discoveries. This work aims to provide an up-to-date compendium of the available results on superconducting hydrides and explain how the synergy of different methodologies led to extraordinary discoveries in the field. Besides, in an attempt to evidence empirical rules governing superconductivity in binary hydrides under pressure, we discuss general trends in the electronic structure and chemical bonding. The last part of the Review introduces possible strategies to optimize pressure and transition temperatures in conventional superconducting materials as well as future directions in theoretical, computational and experimental research.
We predict Co-based chalcogenides with a diamond-like structure can host unconventional high temperature superconductivity (high-$T_c$). The essential electronic physics in these materials stems from the Co layers with each layer being formed by vert ex-shared CoA$_4$ (A=S,Se,Te) tetrahedra complexes, a material genome proposed recently by us to host potential unconventional high-$T_c$ close to a $d^7$ filling configuration in 3d transition metal compounds. We calculate the magnetic ground states of different transition metal compounds with this structure. It is found that (Mn,Fe,Co)-based compounds all have a G-type antiferromagnetic(AFM) insulating ground state while Ni-based compounds are paramagnetic metal. The AFM interaction is the largest in the Co-based compounds as the three $t_{2g}$ orbitals all strongly participate in AFM superexchange interactions. The abrupt quenching of the magnetism from the Co to Ni-based compounds is very similar to those from Fe to Co-based pnictides in which a C-type AFM state appears in the Fe-based ones but vanishes in the Co-based ones. This behavior can be considered as an electronic signature of the high-$T_c$ gene. Upon doping, as we predicted before, this family of Co-based compounds favor a strong d-wave pairing superconducting state.
A simple mechanical method for the investigation of Abrikosov vortex lattice stimulated dynamics in superconductors has been used. By this method we studied the action of pulsed magnetic fields on the vortex lattice and established the resulting chan ge of the course of relaxation processes in the vortex matter in high-temperature superconductors. This method can be used for investigation of phase transitions in vortex matter both high-temperature and exotic superconductors.
Iron with a large magnetic moment was widely believed to be harmful to the emergence of superconductivity because of the competition between the static ordering of electron spins and the dynamic formation of electron pairs (Cooper pairs). Thus, the d iscovery of a high critical temperature (Tc) iron-based superconductor (IBSC) in 2008 was accepted with surprise in the condensed matter community and rekindled extensive study globally. IBSCs have since grown to become a new class of high-Tc superconductors next to the high-Tc cuprates discovered in 1986. The rapid research progress in the science and technology of IBSCs over the past decade has resulted in the accumulation of a vast amount of knowledge on IBSC materials, mechanisms, properties, and applications with the publication of more than several tens of thousands of papers. This article reviews recent progress in the technical applications (bulk magnets, thin films, and wires) of IBSCs in addition to their fundamental material characteristics. Highlights of their applications include high-field bulk magnets workable at 15-25 K, thin films with high critical current density (Jc) > 1 MA/cm2 at ~10 T and 4 K, and an average Jc of 1.3*104 A/cm2 at 10 T and 4 K achieved for a 100-m-class-length wire. These achievements are based on the intrinsically advantageous properties of IBSCs such as the higher crystallographic symmetry of the superconducting phase, higher critical magnetic field, and larger critical grain boundary angle to maintain high Jc. These properties also make IBSCs promising for applications using high magnetic fields.
we were able to develop a novel method to synthesize Fe-based oxypnictide superconductors. By using LnAs and FeO as the starting materials and a ball-milling process prior to solid-state sintering, Tc as high as 50.7 K was obtained with the sample of Sm 0.85Nd0.15FeAsO0.85F0.15 prepared by sintering at temperatures as low as 1173 K for times as short as 20 min.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا