ترغب بنشر مسار تعليمي؟ اضغط هنا

Lead fluoride Cherenkov detector read out by avalanche photodiodes for measuring the intensities of pulsed antiproton beams

66   0   0.0 ( 0 )
 نشر من قبل Masaki Hori
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A Cherenkov detector based on an array of five lead fluoride ($beta$-PbF$_2$) crystals of size 30 mm$times$30 mm$times$160 mm read out by reverse-type avalanche photodiodes (APDs) of active area 10 mm$times$10 mm was used to measure the flux of secondary particles emerging from the annihilation of pulsed beams of antiprotons at the Antiproton Decelerator of CERN. We compared the relative photon yields of radiators made of $beta$-PbF$_2$, fused silica, UV-transparent acrylic, lead glass, and a lead-free, high-refractive-index glass. Some {it p-i-n} photodiodes were also used for the readout, but the output signals were dominated by the nuclear counter effect (NCE) of secondary particles traversing the 300 $mu{rm m}$ thick depletion regions of the photodiodes. Smaller NCE were observed with the APDs, as the maximum electronic gain in them occurred predominately for electron-ion pairs that were generated in the thin ${it p}$-type semiconductor layer that proceeded the {it p-n} junction of high electric field where amplification took place.



قيم البحث

اقرأ أيضاً

A successful operation of a new optical readout system (THGEM + WLS + MGPDs (multichannel array of multipixel avalanche Geiger photodiodes) in a two-phase liquid xenon detector was demonstrated.
The upgrades of ATLAS and CMS for the High Luminosity LHC (HL-LHC) highlighted physics objects timing as a tool to resolve primary interactions within a bunch crossing. Since the expected pile-up is around 200, with an r.m.s. time spread of 180 ps, a time resolution of about 30 ps is needed. The timing detectors will experience a 1-MeV neutron equivalent fluence of about $Phi_{eq}=10^{14}$ and $10^{15}$ cm$^{-2}$ for the barrel and end-cap regions, respectively. In this contribution, deep diffused Avalanche Photo Diodes (APDs) produced by Radiation Monitoring Devices are examined as candidate timing detectors for HL-LHC applications. To improve the detectors timing performance, the APDs are used to directly detect the traversing particles, without a radiator medium where light is produced. Devices with an active area of $8times8$ mm$^2$ were characterized in beam tests. The timing performance and signal properties were measured as a function of position on the detector using a beam telescope and a microchannel plate photomultiplier (MCP-PMT). Devices with an active area of $2times2$ mm$^2$ were used to determine the effects of radiation damage and characterized using a ps pulsed laser. These detectors were irradiated with neutrons up to $Phi_{eq}=10^{15}$ cm$^{-2}$.
Modern avalanche photodiodes (APDs) with high gain are good device candidates for light readout from detectors applied in relativistic heavy ion collisions experiments. The results of the investigations of the APDs properties from Zecotek, Ketek and Hamamatsu manufacturers after irradiation using secondary neutrons from cyclotron facility U120M at NPI of ASCR in v{R}ev{z} are presented. The results of the investigations can be used for the design of the detectors for the experiments at NICA and FAIR.
Lead fluoride ($PbF_{2}$) crystals represent an excellent and relatively innovative choice for high resolution electromagnetic calorimeters with high granularity and fast timing. During the R&D stages of the Crilin calorimeter, three pbfd crystals si zed $5times 5 times 40 $ mm$^3$ were irradiated with $^{60}$Co photons up to $sim 4$ Mrad and with 14 MeV neutrons up to a $10^{13}$ n/cm$^2$ total fluence. Their loss in transmittance was evaluated at different steps of the photon and neutron irradiation campaign, and two optical absorption bands associated with the formation of colour centres were observed at $sim 270$ nm and $sim 400$ nm. Natural and thermal annealing in the dark, along with optical bleaching with 400 nm light, were performed on the irradiated specimens resulting in a partial recovery of their original optical characteristics.
A new type of radiation detector based on a spherical geometry is presented. The detector consists of a large spherical gas volume with a central electrode forming a radial electric field. Charges deposited in the conversion volume drift to the centr al sensor where they are amplified and collected. We introduce a small spherical sensor located at the center acting as a proportional amplification structure. It allows high gas gains to be reached and operates in a wide range of gas pressures. Signal development and the absolute amplitude of the response are consistent with predictions. Sub-keV energy threshold with good energy resolution is achieved. This new concept has been proven to operate in a simple and robust way and allows reading large volumes with a single read-out channel. The detector performance presently achieved is already close to fulfill the demands of many challenging projects from low energy neutrino physics to dark matter detection with applications in neutron, alpha and gamma spectroscopy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا