ﻻ يوجد ملخص باللغة العربية
We answer the question of when an invariant pseudodifferential operator is Fredholm on a fixed, given isotypical component. More precisely, let $Gamma$ be a compact group acting on a smooth, compact, manifold $M$ without boundary and let $P in psi^m(M; E_0, E_1)$ be a $Gamma$-invariant, classical, pseudodifferential operator acting between sections of two $Gamma$-equivariant vector bundles $E_0$ and $E_1$. Let $alpha$ be an irreducible representation of the group $Gamma$. Then $P$ induces by restriction a map $pi_alpha(P) : H^s(M; E_0)_alpha to H^{s-m}(M; E_1)_alpha$ between the $alpha$-isotypical components of the corresponding Sobolev spaces of sections. We study in this paper conditions on the map $pi_alpha(P)$ to be Fredholm. It turns out that the discrete and non-discrete cases are quite different. Additionally, the discrete abelian case, which provides some of the most interesting applications, presents some special features and is much easier than the general case. We thus concentrate in this paper on the case when $Gamma$ is finite abelian. We prove then that the restriction $pi_alpha(P)$ is Fredholm if, and only if, $P$ is $alpha$-elliptic, a condition defined in terms of the principal symbol of $P$. If $P$ is elliptic, then $P$ is also $alpha$-elliptic, but the converse is not true in general. However, if $Gamma$ acts freely on a dense open subset of $M$, then $P$ is $alpha$-elliptic for the given fixed $alpha$ if, and only if, it is elliptic. The proofs are based on the study of the structure of the algebra $psi^{m}(M; E)^Gamma$ of classical, $Gamma$-invariant pseudodifferential operators acting on sections of the vector bundle $E to M$ and of the structure of its restrictions to the isotypical components of $Gamma$. These structures are described in terms of the isotropy groups of the action of the group $Gamma$ on $E to M$.
Let $Gamma$ be a compact group acting on a smooth, compact manifold $M$, let $P in psi^m(M; E_0, E_1)$ be a $Gamma$-invariant, classical pseudodifferential operator acting between sections of two equivariant vector bundles $E_i to M$, $i = 0,1$, and
We study boundary value problems for degenerate elliptic equations and systems with square integrable boundary data. We can allow for degeneracies in the form of an $A_{2}$ weight. We obtain representations and boundary traces for solutions in approp
Let $G$ be a compact Lie group acting smoothly on a smooth, compact manifold $M$, let $P in psi^m(M; E_0, E_1)$ be a $G$--invariant, classical pseudodifferential operator acting between sections of two vector bundles $E_i to M$, $i = 0,1$, and let $a
We show that layer potential groupoids for conical domains constructed in an earlier paper (Carvalho-Qiao, Central European J. Math., 2013) are Fredholm groupoids, which enables us to deal with many analysis problems on singular spaces in a unified t
Given any elliptic system with $t$-independent coefficients in the upper-half space, we obtain representation and trace for the conormal gradient of solutions in the natural classes for the boundary value problems of Dirichlet and Neumann types with