ﻻ يوجد ملخص باللغة العربية
We introduce non-trivial contributions to diffusion constant in generic many-body systems arising from quadratic fluctuations of ballistically propagating, i.e. convective, modes. Our result is obtained by expanding the current operator in the vicinity of equilibrium states in terms of powers of local and quasi-local conserved quantities. We show that only the second-order terms in this expansion carry a finite contribution to diffusive spreading. Our formalism implies that whenever there are at least two coupled modes with degenerate group velocities, the system behaves super-diffusively, in accordance with the non-linear fluctuating hydrodynamics theory. Finally, we show that our expression saturates the exact diffusion constants in quantum and classical interacting integrable systems, providing a general framework to derive these expressions.
Generalised hydrodynamics predicts universal ballistic transport in integrable lattice systems when prepared in generic inhomogeneous initial states. However, the ballistic contribution to transport can vanish in systems with additional discrete symm
We show a way to perform the canonical renormalization group (RG) prescription in tensor space: write down the tensor RG equation, linearize it around a fixed-point tensor, and diagonalize the resulting linearized RG equation to obtain scaling dimens
In this paper we consider the energy and momentum transport in (1+1)-dimension conformal field theories (CFTs) that are deformed by an irrelevant operator $Tbar{T}$, using the integrability based generalized hydrodynamics, and holography. The two com
The problem of characterizing low-temperature spin dynamics in antiferromagnetic spin chains has so far remained elusive. We reinvestigate it by focusing on isotropic antiferromagnetic chains whose low-energy effective field theory is governed by the
We establish a general connection between ballistic and diffusive transport in systems where the ballistic contribution in canonical ensemble vanishes. A lower bound on the Green-Kubo diffusion constant is derived in terms of the curvature of the ide