ﻻ يوجد ملخص باللغة العربية
The Landau-Khalatnikov-Fradkin transformations (LKFTs) represent an important tool for probing the gauge dependence of the correlation functions within the class of linear covariant gauges. Recently these transformations have been derived from first principles in the context of non-Abelian gauge theory (QCD) introducing a gauge invariant transverse gauge field expressible as an infinite power series in a Stueckelberg field. In this work we explicitly calculate the transformation for the gluon propagator, reproducing its dependence on the gauge parameter at the one loop level and elucidating the role of the extra fields involved in this theoretical framework. Later on, employing a unifying scheme based upon the BRST symmetry and a resulting generalized Slavnov-Taylor identity, we establish the equivalence between the LKFTs and the Nielsen identities which are also known to connect results in different gauges.
We derive the Landau-Khalatnikov-Frandkin transformation (LKFT) for the fermion propagator in quantum electrodynamics (QED) described within a brane-world inspired framework where photons are allowed to move in $d_gamma$ space-time (bulk) dimensions,
We explore the dependence of fermion propagators on the covariant gauge fixing parameter in quantum electrodynamics (QED) with the number of spacetime dimensions kept explicit. Gauge covariance is controlled by the the Landau-Khalatnikov-Fradkin tran
By applying an inverse Landau-Khalatnikov transformation, connecting (resummed) Schwinger-Dyson treatments in non-local and Landau gauges of $QED_3$, we derive the infrared behaviour of the wave-function renormalization in the Landau gauge, and the a
An alternative approach to solving the Landau-Khalatnikov problem on one-dimensional stage of expansion of hot hadronic matter created in collisions of high-energy particles or nuclei is suggested. Solving the relativistic hydrodynamics equations by
We calculate gluon and ghost propagators in Yang-Mills theory in linear covariant gauges. To that end, we utilize Nielsen identities with Landau gauge propagators and vertices as the starting point. We present and discuss numerical results for the gl