ﻻ يوجد ملخص باللغة العربية
In this paper we find new integrable one-dimensional lattice models of electrons. We classify all such nearest-neighbour integrable models with su(2)xsu(2) symmetry following the procedure first introduced in arXiv:1904.12005. We find 12 R-matrices of difference form, some of which can be related to known models such as the XXX spin chain and the free Hubbard model, and some are new models. In addition, integrable generalizations of the Hubbard model are found by keeping the kinetic term of the Hamiltonian and adding all terms which preserve fermion number. We find that most of the new models can not be diagonalized using the standard nested Bethe Ansatz.
Based on the inhomogeneous T-Q relation constructed via the off-diagonal Bethe Ansatz, a systematic method for retrieving the Bethe-type eigenstates of integrable models without obvious reference state is developed by employing certain orthogonal bas
We define parafermionic observables in various lattice loop models, including examples where no Kramers-Wannier duality holds. For a particular rhombic embedding of the lattice in the plane and a value of the parafermionic spin these variables are di
The dimer model on a strip is considered as a Yang-Baxter mbox{integrable} six vertex model at the free-fermion point with crossing parameter $lambda=tfrac{pi}{2}$ and quantum group invariant boundary conditions. A one-to-many mapping of vertex onto
The off-diagonal Bethe ansatz method is generalized to the integrable model associated with the $sp(4)$ (or $C_2$) Lie algebra. By using the fusion technique, we obtain the complete operator product identities among the fused transfer matrices. These
Based on the inhomogeneous T-Q relation and the associated Bethe Ansatz equations obtained via the off-diagonal Bethe Ansatz, we construct the Bethe-type eigenstates of the SU(2)-invariant spin-s chain with generic non-diagonal boundaries by employing certain orthogonal basis of the Hilbert space.