ﻻ يوجد ملخص باللغة العربية
Given its unchallenged capabilities in terms of sensitivity and spatial resolution, the combination of imaging spectropolarimetry and numeric Stokes inversion represents the dominant technique currently used to remotely sense the physical properties of the solar atmosphere and, in particular, its important driving magnetic field. Solar magnetism manifests itself in a wide range of spatial, temporal, and energetic scales. The ubiquitous but relatively small and weak fields of the so-called quiet Sun are believed today to be crucial for answering many open questions in solar physics, some of which have substantial practical relevance due to the strong Sun-Earth connection. However, such fields are very challenging to detect because they require spectropolarimetric measurements with high spatial (sub-arcsec), spectral (<100 mA), and temporal (<10 s) resolution along with high polarimetric sensitivity (<0.001 of the intensity). We collect and discuss both well-established and upcoming instrumental solutions developed during the last decades to push solar observations toward the above-mentioned parameter regime. This typically involves design trade-offs due to the high dimensionality of the data and signal-to-noise-ratio considerations, among others. We focus on the main three components that form a spectro-polarimeter, namely, wavelength discriminators, the devices employed to encode the incoming polarization state into intensity images (polarization modulators), and the sensor technologies used to register them. We consider the instrumental solutions introduced to perform this kind of measurements at different optical wavelengths and from various observing locations, i.e., ground-based, from the stratosphere or near space.
Hyperspectral imaging is an ubiquitous technique in solar physics observations and the recent advances in solar instrumentation enabled us to acquire and record data at an unprecedented rate. The huge amount of data which will be archived in the upco
This is a brief review of the experimental and theoretical quantum computing. The hopes for eventually building a useful quantum computer rely entirely on the so-called threshold theorem. In turn, this theorem is based on a number of assumptions, tre
This article outlines our point of view regarding the applicability, state-of-the-art, and potential of quantum computing for problems in finance. We provide an introduction to quantum computing as well as a survey on problem classes in finance that
Context. Remote sensing of weak and small-scale solar magnetic fields is of utmost relevance for a number of important open questions in solar physics. This requires the acquisition of spectropolarimetric data with high spatial resolution (0.1 arcsec
We developed a polarization modulation unit (PMU) to rotate a waveplate continuously in order to observe solar magnetic fields by spectropolarimetry. The non-uniformity of the PMU rotation may cause errors in the measurement of the degree of linear p